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Abstract
The phenomenal rise of cryptocurrencies and decentralized finance have promi-

nently featured “staking”: Besides offering a convenience yield for transactions as
digital media of exchange, tokens are frequently staked (and slashed) for base-layer
consensus generation or for incentivizing economic activities and platform develop-
ment, and consequently earn rewards akin to deposit interests. To provide insights
into the economics of staking and its asset pricing implications, we build a continuous-
time model of a token-based economy agents heterogeneous in wealth stake tokens to
earn rewards or use tokens for transactional convenience, all while dynamically solving
their wealth allocation and consumption problem. We cast the model as a mean field
game with individual stochastic controls and highlight aggregate staking ratio as a key
variable linking staking to token pricing and equilibrium reward rate. The model uses
transaction convenience to rationalize violations of the uncovered interest rate parity
and significant carry premia in the data (e.g., a long-short carry yields a Sharpe ratio
of 1.6). We relate cryptocurrencies to other major asset classes such as currencies and
commodities and empirically corroborate model implications. In particular, staking
ratios capture liquidity and market depth, and its correlation with reward rates is pos-
itive in the cross section but negative in the time series. Higher reward rates attract
greater future staking, increasing individual’s staking allocation and the staking ratio
in aggregate, which in turn predicts positive excess returns.
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1 Introduction

The past decade witnessed the explosive growth in cryptocurrencies, which totaled 2.5

trillion USD by the end of 2021) and rising excitement about Decentralized Finance (Harvey

et al., 2021), which totaled over 130 billion USD as of Feb 2022. The world is just starting

to understand the categorization of tokens and their valuations as digital assets (e.g., Cong

et al., 2021d; Cong and Xiao, 2021). The recent phenomenon of token staking both for base

layer consensus formation and value locking for higher layer DeFi innovations further calls

for a unified framework to understand the use of tokens as transaction media, investment

assets, and deposit-like instruments for earning rewards.

To this end, we build a continuous-time model of an economy with token-based dig-

ital networks, where agents heterogeneous in wealth optimally conduct transactions on a

(blockchain) platform, stake tokens to earn rewards, and consume off-chain. Tokens derive

value by enabling users to conduct economic transactions on the digital platform, making

them a hybrid of money and investable assets. Stakable tokens further serve as collateral

and claims to cash flows. Our model captures the following two distinguishing features of

Proof-of-Stake consensus protocols and stakable projects. First, such tokens are used on plat-

forms that support specific economic transactions or broader use of on-chain based projects.

This generates transaction convenience for holding tradable tokens as Cong et al. (2021d)

proposed. Second, the rate of staking rewards that an agent earns is influenced by other

agents’ behavior in aggregate, but individuals take it as given when making decisions.1

The equilibrium reward rate then is a fixed point determined by the whole distribution

of heterogeneous agents each solving an optimal dynamic control problem taking the market

states as given. We apply the mean field game solution to solve for the equilibrium, which

marks a novel application of the methodology in economics beyond macroeconomics and

inequality issues. We show that staking ratio, defined as the ratio of aggregate tokens

staked in the economy to the total amount of tokens in supply, proves to be crucial for token

pricing and reward rate determination in equlibrium. Related to the TVL (total value locked)
1Take Polkadot (DOT) constitutes an example, the current reward rate for validators is determined by

the current aggregate staking ratio. The less DOT is being staked, the higher are the yield for the planned
amount of rewards.
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ratio that practitioners emphasize, it constitutes a new predictor for token price dynamics.

Uncovered interest rate parity (UIP) is naturally violated and our model predicts profitable

trading strategies utilizing the concept of carry. We then empirically corroborate model

predictions in a comprehensive data covered all major stakable tokens and DeFi projects.

Specifically, agents in our model derive utilities from consumption over an infinite horizon

with time discount. They allocate and adjust their holdings of staked tokens, tradable tokens,

and numeraire under budget constraint, trading off staking rewards, transaction convenience,

and numeraire convenience for off-chain consumption. Transaction convenience endogenously

increases in platform productivity, which stochastically evolves, while staking reward rate is

jointly determined by aggregate reward and tokens staked. The staking ratio involves the

weighted average of individual staking choices, which in turn is shaped by the agents’ wealth

distribution. The resulting reward rate also naturally affects agents’ wealth dynamics by

altering their opportunity sets. Therefore, agents’ individual dynamic optimizations interact

and co-evolve with the wealth distribution in a mean field game.

The resulting equilibrium is characterized by a system of partial differential equations

describing the dynamics of the agent’s value function (HJB equations) and the transport of

wealth distribution (Fokker-Planck equation), which are connected through the fixed point

problem in reward rate. Token price dynamics are fully endogenous and is described by

a partial differential equation akin to the Black-Merton-Scholes formula. We simplify the

equation to an ordinary differential equation concerning the total token valuation, subject

to intuitive boundary conditions such that tokens are worthless for unproductive platforms

and are worth the entire wealth in the economy if the platform is infinitely productive.

We derive three main model implications concerning the economics of staking and its asset

pricing implications. First, staking reward is positively related to the staking ratio in the

cross section. More tokens used as rewards result in a higher staking ratio in aggregate and

for individual agents. Second, the expected price appreciation increases with the aggregate

staking ratio, and both the price drift and staking ratio are functions of platform productivity.

Third, there are general predictable excess returns to staking over holding the numeraire,

which arise as a compensation for the losses in transaction and consumption convenience.
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The third implication provides a perspective that links stakable tokens and compares

them to traditional assets such as currencies. The token price can be treated as exchange

rate against numeraire (such as USD), whereas the reward rate can be viewed as a deposit

interest rate of token. Then the model implies that the classical uncovered interest rate

parity (UIP) fails.2 We also derive the expression for crypto carry following the general

definition of carry (Koijen et al., 2018). Higher carry (equivalent to higher reward rate)

attracts greater staking, which generates excess price appreciation. As an aggregation of

reward rate and price appreciation, the excess return is therefore higher. Considering the

reward distribution mechanism of staking economy, reward rate is automatically reduced by

an excessive staking ratio. As a result of this effect, carry predicts less excess returns in the

time series than in the cross-section.

For our empirical analyses, we obtain data on 60 tokens from stakingrewards.com that

cover all major stakble cryptocurrencies from July 2018 to February 2022. Our empirical

findings support the model predictions. First, we document that higher reward for staking

significantly relate to higher staking ratio. As the aggregate reward (relative to the total

amount of tokens) increases by 0.1 unit, the corresponding staking ratio increases by 8.0%.

Moreover, reward rate has predictable effect on changes in staking ratio in both cross-section

and time series. On average, 1% increase in reward rate in the previous week increases the

staking ratio in the following week by about 0.033%. This property is robust with both

two-way fixed effect and control variables including market value effect and volatility effect.

However, the significance of this effect decreases with longer time intervals, reflecting to

some extent the mechanical downward adjustment of the reward rate when more tokens are

staked and the fact that in practice, tokens are locked for a prolonged period of time. More

staking and token locked now mechanically decreases the reward rate because the staking

rewards have to be divided among more stoked tokens.

We also verify in the data that a larger staking ratio predicts greater price appreciation

in subsequent weeks. If the staking ratio increases by 1%, the corresponding token price will
2UIP implies that the expected returns on default-free deposits across currencies are equalized, and thus

the expected excess return should be zero. However, there are predictable excess returns that arise as a
compensation for convenience loss. This explanation shares similar idea with Valchev (2020).
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appreciate by 0.221% in the following week. Considering that the variation of staking ratio

is often large, especially in the cross section, this effect is relevant for investment decisions.

Crypto market return and size factors do not explain the predictive power of staking ratio,

which is closely related to market liquidity and depth, and reflects the fact that tokens can

be commodity-like.3 Staking reduces the supply of liquid cryptocurrencies, and hence pushes

up the token’s prices and increases the convenience yields of tokens. This is similar to how

under capital constraints, using commodities as collateral for raising funds increases the spot

price and the convenience yield of the underlying commodities (Tang and Zhu, 2016).

Finally, to test for violations of UIP, we follow Fama (1984)’s method and obtain the

estimated β is significantly deviates from zero, and even close to ´1, where β should be

zero under the UIP. As a direct corollary, we construct a carry trade strategy that goes

long high-carry cryptos and shorts low-carry assets. The carry trade yields a Sharpe ratio

of 1.6, which proves that in the cross-section, assets with higher carry generate greater

returns. We further test how crypto carry predicts excess return. The result shows that high

carry predicts excess returns almost one-for-one in cross-section, but the effect is reduced in

time series. Intuitively, a higher reward rate attracts more staking which persists over time

because tokens are typically locked for an extended period of time, reducing the reward rate

going forward and thus the total expected return.

Our study adds to the literature on blockchain economics and cryptocurrency markets.4

In particular, we build on the tokenomics framework of Cong et al. (2021d) and Cong et

al. (2021c) to add to emerging studies on Proof-of-Stake protocols (e.g., Fanti et al., 2019;

Saleh, 2020; Benhaim et al., 2021) and debates on the environmental and scalability issues

associated with Proof-of-Work (PoW) protocols (e.g., Cong et al., 2021e; Hinzen et al., 2019).

The most closely related paper to ours is John et al. (2021) who examine equilibrium staking
3Commodities Futures Trading Commission (CFTC) regards cryptocurrencies as commodities, see, e.g.,

https://www.cftc.gov/sites/default/files/2019-12/oceo_bitcoinbasics0218.pdf.
4Extant studies mostly examine issues related to consensus algorithms (Biais et al., 2019; Saleh, 2021),

cryptocurrency mining (e.g., Cong et al., 2021e; Lehar and Parlour, 2020), scalability (e.g., Abadi and
Brunnermeier, 2018; John et al., 2020), fee designs Easley et al. (2019); Basu et al. (2019); Huberman et al.
(2021), DeFi (e.g., Harvey et al., 2021; Capponi and Jia, 2021), ICOs (e.g., Lyandres et al., 2019; Howell et
al., 2020), pricing of crypto assets (e.g., Liu et al., 2019; Cong et al., 2021a), manipulation and regulation
(e.g., Griffin and Shams, 2020; Li et al., 2021; Cong et al., 2021b, n.d.), or digital currencies (e.g., Gans et
al., 2015; Bech and Garratt, 2017; Chiu et al., 2019; Cong and Mayer, 2021).
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on PoS blockchains and conclude that staking levels and block rewards could exhibit non-

monotone relationship when agents having different trading horizons. We differ in that we

focus on agent heterogeneity in wealth instead, and on equilibrium staking ratio. We also

examine UIP violations and crypto carry concerning the cross section of tokens and provide

empirical evidence to corroborate our model predictions. Our study is among the first to

analyze equilibrium DeFi staking, complementing overviews such as Harvey et al. (2021).

A sizable literature document violations to uncovered interest rate parity (e.g. Fama,

1984; Lustig et al., 2019). Carry and its predictability have been analyzed not only for

currencies but also for other assets such as equities (e.g., Fama and French, 1998; Griffin

et al., 2003; Hou et al., 2011), bonds (e.g., Ilmanen, 1995; Barr and Priestley, 2004), and

commodities (e.g., Bailey and Chan, 1993; Casassus and Collin-Dufresne, 2005; Tang and

Xiong, 2012). Koijen et al. (2018) applies a general concept of carry and find that carry

predicts returns in both the cross-section and time series. We add by documenting UIP

violation and carry among cryptocurrencies (and fiat currencies). We theoretically rationalize

the observations and link carry to tokenomics, complementing recent empirical work by Franz

and Valentin (2020) documenting deviations of covered interest parity in cryptocurrencies.

The remainder of this paper is structured as follows. Section 2 describes the institutional

background and stylized facts concerning staking. Section 3 proposes a dynamic model of

the staking economy. Section 4 solves the model and derives several implications. Section 5

presents corroborating empirical evidence. Section 6 further discusses crypto carry. Section

7 concludes.

2 Institutional Background, Data, and Stylized Facts

We describe institutional background, data, and stylized facts about the staking, which

involves two broad categories of activities, namely those related to pan-PoS consensus pro-

tocols and those in higher layer DeFi applications.
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2.1 Staking Mechanisms

Consensus generation in PoS. Fundamentally, blockchain functions to generate rel-

atively decentralized consensus to enable economic interactions such as value or informa-

tion exchanges (e.g., Cong and He, 2019). Permissionless blockchains with Bitcoin as the

best known example have historically relied on variants of the PoW protocol. Because of

scalability and environmental issues of PoW (Cong et al., 2021e; John et al., 2020), PoS

protocols have gained popularity and momentum for both permissioned and permissionless

blockchains, with major market players adopting and incumbents such as Ethereum contem-

plating a conversion (Irresberger et al., 2021).

Under PoS, agents who stake native tokens have opportunities to append blocks and earn

block rewards and fees as compensation. There are mainly two ways to participate. The first

is to run a validator node, staking pool, or masternode by holding native tokens and incur

the costs including hardware costs and time spent on maintenance. The more one stakes, the

more likely one is selected and compensated for (Saleh, 2020, contains more details). Note

that holding a token does not necessarily mean participating in staking. The second way is

through delegation. Agents only need to delegate their tokens to an existing node or a pool

and receive a reward earned by the node/pool. This route is flexile an friendly for players

with less tokens and allows them risk sharing (Cong et al., 2021e). In practice, agents incurs

negligible physical costs (as opposed to the high entry cost in PoW mining or maintaining a

node in PoS directly). In our study, we include all protocols using pan-PoS protocols such

as Proof-of-Credit (POC) used in Nuls, which are variants of the above mechanisms.

Staking (value lockup) in DeFi. Incentivizing desirable behavior and guarding against

misbehavior are crucial in DeFi applications. To this end, staking programs are popular

and important in practice, which applies to a balance of tokens under custody in a smart

contract. Users on DeFi platforms receive staking rewards as a form of interest payment

from her token balance staked (Harvey et al., 2021). Synthetix is an example of an open-

source DeFi protocol on Ethereum involving staking in its SNX tokens. Users can create

and trade derivative tokens and gain exposure to assets like gold, bitcoin, and euros without
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having to actually own them. These derivative assets are collateralized by the platform

tokens (SNX) which, when locked in the contracts, enables their issuance. In return, each

transaction generates a small fee distributed to SNX collateral providers. Another example

is ChainLink, the leading decentralized oracle network. Oracle nodes stake LINK tokens

to compete for service tasks and to ensure truthful reporting while depositors stake tokens

to help with the alert system for bribery resistance and network security. In return, these

agents earn staking rewards from both newly issued tokens and fees.

Without getting bogged down with specific threshold requirements and operational differ-

ences across various DeFi protocols and smart contracts, DeFi staking can be characterized

as simply having different benefits (rewards) and costs (including risks), from the stakers’

perspective. Overall, staking shares the spirit of certificates of deposit or risky illiquid in-

vestments.

Reward determination and slashing. In most staking programs, including PoS chains,

on-chain projects and DeFi platforms, the total amount of rewards used to incentivize staking

or its determination mechanism is pre-specified and announced. Therefore, the aggregate

reward for a specific window of time is common knowledge.

In PoS, blockchain branch is randomly selected from the whole staking pool. That is,

staking reward is randomly distributed to stakeholders based on the number of staked coins

they hold as a probability weight. For example, if investor stake 10 coins while the aggregate

staked amount of this branch is 100, then the investor has a 10% probability of appending to

the branch and receiving staking reward. As the above process is continuously repeated, we

can calculate the expected reward by multiplying the aggregate reward and the probability.

Similarly, in DeFi platforms, stakers share the rewards that come from transaction fees or

pre-determined emissions.

Since the rewards are yield from staked tokens, staking reward rate is naturally compared

to interest rate. However, unlike deposite rates set by the banks, staking reward rate is jointly

determined by announced staking reward and the aggregate tokens staked. Appendix E.

details the staking programs for the tokens in our sample.
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In addition to the opportunity costs, stakers also risk losing the staked tokens due to

possible security attack, illegal verification, and storage failure. In order to discourage val-

idator misbehavior, most projects propose a punishment mechanism known as slashing. A

pre-defined percentage of a validator’s tokens are lost when it does not behave consistently

or as expected on the network. The two prominent cases causing slashing are downtime and

double signing, with the latter involving much larger penalties typically.

Market and information. In PoS, validators compete in the staked amount to earn

reward. To incentive more delegates, they develop a reward distribution plan at the node

level. Potentially delegators can freely choose among these nodes or delegate through some

intermediaries. Therefore, nodes engage in price competition for delegated stakes.5 For DeFi

platforms, staking reward rate are typically equal for participants, but some white-listed

groups may have priority in staking. Most stakable tokens are launched on mainstream

cryptocurrency exchanges. Investors can easily invest in these staking projects and trade

these tokens with cryptocurrency assets such as Bitcoin and Ethereum.

Information on staking programs, including participation rules, reward distribution plan,

total staked value (or total value locked, TVL, which includes non-native tokens), and even

information of all the validators, are open and can be easily obtained on official websites of

projects. Third party websites also specialize in collecting real-time information on staking

projects; examples include Stakingrewards.com and EarnCryptoInterest. In particular, an

important variable in our analysis, the staking ratio, which captures the total number of

tokens staked as a fraction of the total number of tokens, is public knowledge.

2.2 Data

Our acquire data from Stakingrewards.com, one of the largest websites that collect in-

formation on staking and offer both historical and real-time data of most stakable assets.

Stakable asset is a general classification for tokens with properties to staking, which includes

those on PoS-type blockchains (e.g., NPOS and POC) and on-chain projects which enable
5In practice, staking reward rates may not exactly equal. For example, large nodes may have slightly

lower reward rates because they are considered more reliable and have more stable returns.
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passive returns through staking. The information about staking reward and proportion

is typically aggregated from official websites of each token, including staking participation

methods, reward sharing rules, real-time staking amount (staking ratio), yield calculation,

etc. Price data come from mainstream crypto markets. Note that there may exist multiple

staking participation methods for one token. We always choose the participation method

with the lowest capital threshold and risk, such as delegating, voting, etc. Please see Ap-

pendix E. for details about staking participation.

Our sample covers daily observations of 60 stakable tokens with the largest market cap-

italization and longest time span. The sample period covers July 2018 through Feb 2022,

which overlaps with the initial birth and rapid growth of “staking.”6 Our sample covered not

only the top stakable assets with the greatest market value as of the latest date (Feb 2022),

but also all the stakable assets with a market value of more than 100 million US dollars as of

the earlier period (Aug 2020), including POS chains (e.g., Solana), pan-POS protocol (e.g.,

Nuls), on-chain projects (e.g., Matic), and DeFi applications (e.g., SNX).

Table 1 contains summary statistics of the tokens. In most of our analysis, we aggregate

the daily observations into weekly data because daily data contain much more noise. We

also aggregate data into 14-day and 30-day windows for robustness. The summary statistics

show a large dispersion in the status of staking participation and price appreciation among

tokens: the mean staking reward rate ranges from 0.02% to 75.20%, while the mean staking

ratio ranges from 6.30% to 98.02%.

2.3 Empirical Patterns in Staking and Token Pricing

Aggregate trends. The staking economy has grown rapidly in recent years. First, for

layer 1, the shift of focus away from PoW and onto the PoS consensus algorithms has been

evident and timely.7 The PoS share, has increased substantially over time from 5% in

October of 2019 to over 20% in October 2021. As of Oct. 2021, the PoS market cap is $
6Some tokens were launched after the start date, thus the sample set is an unbalanced panel.
7According to 2021 Staking Ecosystem Report 2021 published by StakingRewards in

Oct. 2021, available at https://cms.stakingrewards.com/wp-content/uploads/2021/10/
2021-Staking-Ecosystem-Report-1.pdf.
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326.775 Billion, up from $ 21.117 Billion a year ago. The annual growth rate reached 1,500%,

while the overall crypto market cap is up by 673%.

Meanwhile, there are more than 60 stakable DeFi assets, 27 masternodes and more than

50 mainstream crypto assets that can be staked for rewards on DeFi platforms by the end

of 2021. The entire staking economy has grown to over 4 million total users. Stakers earn a

weighted-average 8% (or an equal-weighted 15%) annual staking reward rate approximately

with a 40.91% weighted-average staking ratio.

Violations in uncovered interest rate parity. The Uncovered Interest Rate Parity

(UIP) is an important benchmark in traditional international exchange models, especially

in exchange rate determination. It implies that the difference in interest rates between two

countries will equal the relative change in currency foreign exchange rates over the same

period. However, UIP violation is widely documented in empirical studies (e.g., Backus et

al., 1993; Engel, 1996, 2016): An increase in the domestic interest rate relative to the foreign

one is associated with an increase in the excess return on the domestic currency over the

foreign currency (the “UIP Puzzle”). Many explanations for the UIP violation have been

proposed in previous studies, ranging from time-varying risk including liquidity and volatility

risk (e.g., Bekaert, 1996; Verdelhan, 2010; Gabaix and Maggiori, 2015; Lustig et al., 2011),

peso problems (e.g., Burnside et al., 2011), to time-varying convenience yield differentials

(e.g., Valchev, 2020; Jiang et al., 2021).
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Table 1: Summary statistics: staking reward rate, staking ratio and price change.

Token Reward Rate, r Staking Ratio, Θ Daily Return Token Reward Rate, r Staking Ratio, Θ Daily Return
(%, Annual) (%) (%) (%, Annual) (%) (%)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

1inch 3.23 5.99 13.49 9.24 ´0.39 6.32 kyber 4.27 2.44 27.08 2.98 0.18 5.65

aave 4.16 0.97 23.21 1.80 0.30 6.35 livepeer 63.63 31.17 63.64 4.70 ´0.27 11.48

aion 6.57 1.32 26.10 3.28 0.17 6.72 lto 7.31 1.23 24.59 4.40 0.67 7.14

algorand 6.54 3.10 58.01 9.15 0.03 6.03 matic 24.13 12.50 24.96 3.81 0.76 7.38

ark 9.29 0.52 54.55 1.40 ´0.04 6.27 mina 12.11 1.24 98.02 4.48 ´0.18 7.38

avalanche 10.11 2.17 65.78 8.49 0.65 7.39 mirror 42.09 24.44 32.88 7.21 ´0.32 6.10

band 12.99 1.54 80.36 1.64 0.20 6.79 near 11.98 2.01 36.77 4.40 0.45 7.14

bifi 8.38 3.33 47.47 15.67 0.21 6.83 nem 0.02 0.01 41.39 1.41 ´0.16 4.78

binance-sc 12.52 5.19 67.99 12.62 0.16 4.54 neo 2.53 1.29 0.05 5.45

bitbay 2.25 0.50 45.86 6.68 0.96 19.71 nuls 9.17 0.97 44.26 4.05 0.17 6.89

cardano 5.96 2.13 66.10 10.24 0.35 5.83 oasis 15.72 2.24 48.22 3.43 0.12 6.97

cosmos 9.68 1.32 67.93 6.52 0.15 6.22 pancakeswap 75.20 26.27 37.89 2.57 0.07 6.85

curve 3.22 1.79 73.78 19.06 0.08 7.01 peakdefi 44.14 16.63 34.66 24.78 ´0.29 5.75

dash 6.28 0.28 52.45 2.45 ´0.09 5.62 polkadot 12.18 1.76 60.59 5.38 0.42 6.18

decred 6.48 1.84 54.26 4.57 0.13 5.14 qtum 5.68 0.87 16.86 2.49 0.09 5.26

dfinity 15.17 2.14 49.47 0.50 ´0.74 5.71 secret 26.95 2.62 49.48 4.34 0.50 7.49

dodo 67.60 4.56 42.47 3.85 ´0.88 5.83 smartcash 2.49 0.53 7.77 0.77 0.12 6.40

elrond 17.91 7.00 53.42 6.88 0.64 6.33 snx 26.56 21.19 62.41 15.12 0.33 6.37

eos 4.67 3.72 38.08 23.83 0.02 5.06 solana 8.41 2.86 70.87 8.57 0.67 6.68

eth2.0 11.61 11.87 6.30 2.62 0.46 3.89 stafi 20.94 3.20 21.17 3.33 ´0.04 8.12

fantom 30.30 25.39 58.27 9.77 0.66 8.79 stake-dao 22.74 9.09 34.70 4.83 ´0.14 8.16

flow 9.31 1.13 57.87 10.58 ´0.63 5.24 sushi 10.44 4.57 31.78 3.00 ´0.35 6.44

harmony 10.54 0.77 45.29 6.03 0.59 7.38 terra 9.35 3.36 31.29 4.66 0.63 6.53

icon 17.42 3.46 27.30 6.52 0.20 6.15 tezos 6.58 1.39 72.36 9.21 0.05 5.76

idex 6.89 6.81 34.09 12.78 0.27 7.54 tron 3.79 1.28 24.64 5.00 0.14 5.08

injective 4.35 0.18 97.34 0.83 ´0.38 6.55 wanchain 8.12 0.56 24.77 1.66 0.19 6.24

iotex 10.15 3.62 41.81 6.17 0.09 6.62 waves 4.39 1.44 64.61 11.87 0.24 5.99

irisnet 10.64 0.59 33.83 1.92 0.40 8.12 wax 3.00 1.95 61.08 22.38 0.29 6.05

kava 18.66 19.30 66.36 10.89 0.32 6.30 yearn 4.75 2.68 8.35 9.26 0.32 6.97

kusama 14.14 0.79 53.58 10.81 0.52 6.38 zcoin 16.04 3.28 56.88 10.18 0.35 4.72

Notes: According to the reward distribution mechanism, there is no concept of staking ratio for neo.
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Figure 1: UIP violation in the staking cryptocurrency market.
This figure empirically visualizes the violation of uncovered interest rate parity (UIP) in the cryptocurrency
market based on the data as Table 1 summarizes. We treat the US dollar as local currency and the 1Y
treasury interest rate as the local interest rate. The data is from the Federal Reserve. For the tokens in our
sample, we convert the data into weekly data. Each point in the figure indicates a weekly data point for a
particular token. The staking reward rate (annualized) is used as foreign interest rate, and the x-axis, the
interest rate spread, is calculated as the foreign interest rate minus the local interest rate. The y-axis is the
excess return in the next week, which includes the interest rate spread and the price appreciation. Since
the token are priced in US dollars, the price change is the change in foreign exchange rates. The grey line
shows a linear trend of the scatter points. If UIP holds, the slope should be close to zero. However, the
points and the grey line are significantly sloping upwards, implying that an increase in the foreign interest
rate relative to the local one is associated with an increase in the excess return on the cryptocurrency over
the local currency, i.e. which is so-called “the UIP puzzle”.

We find that UIP is also violated in cryptocurrencies. Since token price and staking

reward rate can be compared to exchange rates and interest rates, we can directly document

crypto UIP violations. Specifically, if we treat the U.S. dollar as a local currency, then the

change of token price (denominated in US dollar) is equivalently considered as the change

in foreign exchange rates. Moreover, earning staking reward is similar to earning interest

rates. Figure 1 illustrates with a plot of the excess return in the next week against the

interest rate spread calculated as the “foreign interest rate” minus the “local interest rate.”

Each blud circle in the figure indicates a weekly data point for a particular token, and the

grey line shows a fitted line. If UIP holds, the slope should be close to zero. However,

the observed upward slope implies that an increase in the foreign interest rate relative to

the local one is associated with an increase in the excess return on the cryptocurrency over
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the local currency, i.e., the so-called “the UIP puzzle.” We discuss the implications of UIP

violations further after we introduce our model of the staking economy.

3 A Dynamic Model of the Staking Economy

In our model, heterogeneous agents optimally allocate individual wealth in a continuous-

time economy with a digital network subject to productivity shocks. The native token

adoption and staking reward rate are endogenously determined. We capture the interaction

among agents’ stochastic control and the evolution of aggregate system states using a mean-

field game-theoretical approach, which has been used in describing, e.g., trade crowding

(Cardaliaguet and Lehalle, 2018) and mining competition (Li et al., 2019). We also introduce

an important state variable, the staking ratio, defined as the ratio of tokens staked in the

economy to the total amount of tokens. It is an aggregation of the agents’ controls as well

as an important system state that influencing token prices and agents’ optimizations.

3.1 Setup

Time is continuous and infinite. A continuum of agents conducts peer-to-peer transac-

tions on a blockchain platform or a general digital marketplace while participating in staking

programs either to provide network consensus or contribute to certain DeFi protocols. A

generic consumption good serves as the numeraire and medium of exchange on the platform

is its native token.

Platform productivity and token price. As in Cong et al. (2021d), platform produc-

tivity At captures the general usefulness and functionality of the digital platform, and thus

reflects the convenience users obtain transacting on the platform using its tokens. We assume

that At evolves according to a Geometric Brownian Motion:

dAt “ µAAtdt ` σAAtdZt, (1)

where Zt is the primary source of uncertainty for the platform economy.
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Without loss of generality, we denote the token price (in numeraire) as Pt, whose dynamics

follow a general diffusion process:

dPt “ µtPtdt ` σtPtdZt, (2)

where µt and σt are endogenous and in general time-varying.

Agents, adoption, and convenience. Agents of unit measure is indexed by i and each

characterized by her current wealth wi,t. Each agent makes consumption-portfolio choices

among staked (locked) tokens, non-staked (tradable) tokens, and numeraire (consumption

goods or fiat). An agent becomes a platform user if she holds tokens either for staking or

transactions on the platform.

Users gain convenience from holding tokens and conducting economic activities on the

platform. Since staked tokens are locked from the staker’s perspective, they can only derive

transaction convenience from non-staked (tradable) tokens, which we model similarly as in

Cong et al. (2021d,c): For an agent holding xt (in numeraire) worth of tradable tokens on

the platform, she derives a utility flow:

dvpxtq “ dvt “ x1´α
t pUtAtq

αdt. (3)

The marginal transaction convenience Bv
Bx

ą 0 and decreases with xt with α P p0, 1q.

Ut “ Upwtq ą 0 is the user type that reflects heterogeneity in transaction needs and is a

function of wealth wt since agents only differ in wt.

Following Bansal and Coleman (1996) and Valchev (2020), the convenience of holding

the numeraire is reflected in the reduction of transaction costs in consumption. We denote

the transaction cost as Ψt “ Ψtpyt, ntq ě 0, where yt and nt are consumption and numeraire

holdings respectively. Naturally, BΨ
By

ą 0 and BΨ
Bn

ă 0. Then ´BΨ
Bn

ą 0 reflects the marginal

convenience yield of holding the numeraire.

We later specify that the token convenience and transaction costs enter agents’ wealth

dynamics rather than utility for two reasons: First, token convenience flow and transaction
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costs are indeed in monetary form in practice, corresponding to business profits and liquid-

ity costs on real balances respectively. Second, this approach is functionally equivalent to

accounting them in the utility function (Feenstra, 1986), and is a standard approach in the

literatures on convenience yields of bonds, etc.

Staking rewards. Staking rewards are used to incentivize agents to stake their tokens to

either generate consensus records in a base layer or to participate in some DeFi program, such

as a liquidity pool or insurance pool. In practice, staking rewards come from additional token

issuance (emission) or fees others pay. The reward schedule is typically public information

the time of staking, and can be at least estimated based on real-time blockchain data (see

details in Appendix E.). To quantify staking rewards, we denote the total amount of tokens

at time t as Qt, which satisfies

dQt “ EpQt, Atqdt. (4)

The growth rate of token supply implies an inflation rate ιt. We denote the aggregate rewards

generated by the transaction fee by a random variable Ft “ τtQt ě 0, the randomness can

capture unexpected reward shock.8 If the system involves only a constant emission for

rewards, then the total amount of tokens distributed as staking rewards at time t, Rt, come

from a combination of emission and fees:

Rt “ EpQt, Atq ` FtpQt, Atq “ ιtQt ` τtQt. (5)

All staked tokens are fungible and consequently all stakers face a reward rate akin to interest

rates on bank deposits:

rt ”
Rt

Lt

, where Lt is the aggregate amount of staked tokens at t. (6)

To capture the cost of node operation and risk of slashing, we assume that stakers incur
8We need no additional assumptions about Ft for both the theoretical and numerical analyses. In practice,

the expected aggregate transaction fee weakly increases with At. In our baseline model, τ is a mean zero
random variable. We also extend it to a random variable with non-negative mean τ̄ , and even considering
the case that τ̄ increases with At, which has little impact on the main properties in the present work.
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costs at a rate ct ă rt proportional to their staking amount. Then if someone stakes kt

tokens (ktPt dollars), by Itô’s Lemma, the resulting wealth increments satisfy:

dpktPtq “ ktdPt ` Ptprt ´ ctqktdt “ pktPtqrpµt ` rt ´ ctqdt ` σdZts. (7)

3.2 Agents’ Problem and Staking as Optimal Control

At time t, an agent with wealth wt chooses the level of consumption yt, and holds a port-

folio consisting of lt numeraire-equivalent amount of staked tokens, xt numeraire-equivalent

amount of tradable tokens and nt numeraire, where xt, lt, nt P r0, wts, nt “ wt ´ xt ´ lt.

Given personal wealth wt and staking reward rate rt, agents decide the controls pyt, xt, ltq

to optimize discounted infinite horizon utility.

max
tys,xs,lsu8

s“t

Et

„
ż 8

t

e´ϕps´tqUpysqds

ȷ

, (8)

where Upytq is agents instant utility from consumption, which is strictly increasing and

concave, and ϕ is the discount rate. The agent’s wealth dynamics has to satisfy:

dwt “ rpxt ` ltqµt ` ltprt ´ ctq ` vt ´ yt ´ Ψtsdt ` pxt ` ltqσtdZt. (9)

Because the staked tokens cannot be traded, the agent also faces the budget constraint:

yt ď wt ´ lt. (10)

For each given rt, define the indirect utility function as

Jpt, wt; rtq “ max
tys,xs,lsu8

s“t

Et

„
ż 8

t

e´ϕps´tqUpysqds

ȷ

. (11)

We can derive the Hamilton-Jacobi-Bellman (HJB) equation:

0 “ max
tyt,xt,ltu

"

Upytq ´ ϕJ ` fpyt, xt, lt;wt, rtq
BJpt, wt; rtq

Bw
`

σ2
t

2
pxt ` ltq

2B2Jpt, wt; rtq

Bw2

*

, (12)
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where fpyt, xt, lt;wt, rtq “ pxt ` ltqµt ` ltprt ´ ctq ` vt ´ yt ´ Ψt.

3.3 Dynamic Equilibrium

We now solve for a Markovian equilibrium for the mean-field game.

Staking ratio. Denote the density function of investors’ wealth w at time t as mpt, wtq.

Assume all the investors have non-negative and finite wealth. m is an absolutely continuous

density on the state space W “ r0, w̄s. An important global variable is the staking ratio Θt,

the ratio of the aggregate number of staked tokens to the total number of tokens under the

current given system states:

Θt “ Θprtq “
Lt

Qt

“

ş

W
lpt, wt; rtqmpt, wtqdwt

ş

W
rxpt, wt; rtq ` lpt, wt; rtqsmpt, wtqdwt

, (13)

From the agents’ perspective, they make staking choices taken as given the reward rate.

That is, staking ratio is a function of current reward rate rt. Through the HJB equation and

the continuity assumption of m, it can be shown that Θt is continuous in rt. Staking ratio

is important because it links individual choices with global states. It can be viewed and

tracked on the public data websites such as StakingRewards.com or the official platform of

the tokens. Therefore, Θt in public information at time t in practice.

Token market clearing. In aggregate, the total amount of tokens Qt is equal to the sum

of the number of individual’s personal token holdings, i.e.

QtPt “

ż

W

pxt ` ltqmpt, wtqdwt “ {xt ` lt, (14)

where lt “ lpt, wt; rtq and xt “ xpt, wt; rtq are the value of staked and non-staked (tradable)

token holdings respectively, and {xt ` lt represents (wealth weighted) average value of xt ` lt,

which is essentially the total wealth allocated to the platform with a unit measure of agents.
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Combining Eq.(13) and Eq.(14), we obtain:

PtLt “ PtQtΘt “

ż

W

ltmpt, wtqdwt. (15)

This equation is only related to the staked tokens, which can be considered as the market

clearing condition in the staking market. Naturally, the token price Pt that satisfies the

market clearing condition should simultaneously clear both the staking and non-staking

market. Otherwise, arbitrage opportunities arise.

Mean-field game equilibrium. We now consider the evolution of the mean field of this

framework, i.e. the distribution of investors’ wealth mpt, wtq. The dynamic is characterized

by Fokker-Planck equation as Eq.(16), with initial condition mp0, w0q “ m0.

0 “
B

Bt
m `

B

Bw
rfpyt, xt, lt;wt, rtqms ´

1

2

B2

Bw2

“

pxt ` ltq
2σ2m

‰

,

where fpyt, xt, lt;wt, rtq “ pxt ` ltqµt ` ltprt ´ ctq ` vt ´ yt ´ Ψt.

(16)

The evolution of the wealth density changes the system states and, in turn, agent’s

optimization problem. According to the reward distribution mechanism as Eq.(6) shows, the

resulting reward rate rt is updated by the aggregate of agents’ controls, Θprtq. In equilibrium,

we obtain a fixed point problem in rt:

rt “
Rt

QtΘprtq
. (17)

We denote the equilibrium reward rate and staking ratio as r˚
t and Θ˚

t “ Θpr˚
t q. We

naturally define ρt as the staking reward ratio,

ρt ”
Rt

Qt

“ ιt ` τt. (18)

It indicates the number of tokens used for rewards as a percentage of the total amount

of tokens on the platform. In practice, ρt and rt are both important characteristics in the

staking economy. In most staking economy, especially most PoS chains, the aggregate reward
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ratio is fixed or at least can be estimated, while the staking reward rate features the actual

return that agents will earn like deposit rate. In contract to staking reward rate in (6), rt,

staking reward ratio ρt is a system state and completely independent with agents’ staking

activities. Since ρt has a one-to-one correspondence to the equilibrium r˚
t , we write the

equilibrium staking ratio as Θpρtq when performing comparative statis analysis but as Θprtq

in the process of deriving and characterizing the equilibrium.

Eq.(12) is a backward PDE on discounted value function J , and Eq.(16) is a forward

transport equation of mean field density m with initial condition mp0, w0q “ m0. Together

with (17), they make up the whole mean-field game system (with controls). A mean field

game (MFG) equilibrium is then characterized by agents’ controls tyt, xt, ltu
8
t“0 and evolu-

tionary path of system states tPt, rt,Θt,mtu
8
t“0 such that each agent solve her optimization

problem, the token market clearing condition is satisfied, and the system states satisfies the

Fokker-Planck equation and the fixed point problem. Note that in this infinite horizon MFG

system, there is no reason for a stationary state of density m as an equilibrium.9 The PDEs

are a system of evolution equations given the initial density state. See Appendix C. for more

discussion on mean field game system.

4 Model Solution and Implications

We solve the model and derive implications that hold under general wealth distributions.

4.1 Staking Ratio & Reward

We start by analyzing the optimal decision of a single agent. We define θt as agents’

individual staking ratio given reward rate rt at time t.

θt “ θpwt; rtq “
lpt, wt; rtq

xpt, wt; rtq ` lpt, wt; rtq
“

lpt, wt; rtq

qpt, wt; rtq
, (19)

where qt “ qpt, wt; rtq “ xt ` lt is the aggregate value of individual token holding.
9In other words, there is no reason for Bm

Bt “ 0 in Eq.(16) when solving the equilibrium.
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At the instant of decision-making, the agent takes the reward rate rt as given, whereas

according to Eq.(3), transaction convenience is related to user type. In particular, the

marginal transaction convenience is decreasing with xt, the amount of tradable token held.

Naturally, the agent makes a trade-off between obtaining staking reward and transaction

convenience. Intuitively, when the reward rate is higher, the agent should have a higher

individual staking ratio θt. Moreover, for a given user type, when the agent holds very

few tokens, staking should be dominated by non-staking, since the marginal transaction

convenience is sufficiently high. Proposition 1 formalizes the tradeoffs.

Proposition 1. Optimal individual staking. For an agent with wealth wt, the optimal

aggregate value of token holding q˚
t is unique and positive. The optimal individual staking

ratio θ˚
t is weakly increasing in wt and satisfies

θ˚
t “ max

#

0, 1 ´

ˆ

1 ´ α

rt ´ ct

˙
1
α AtUt

q˚
t

+

. (20)

Clearly, agents with different wealth will have heterogeneous optimal individual staking

ratio. However, the common denominator is that when the staking reward is greater, agents’

staking ratio will also be greater. (20) reflects agent’s trade-off between staking reward and

transaction convenience. Until the marginal transaction convenience becomes smaller than

the staking reward rate, i.e. rt ´ ct ą p1 ´ αqpAtUt

q˚
t

qα, the agent starts putting the excess

token positions into the staking pool.

Substituting the agents’ individual optimal choices into (13), we ontain the resulting

aggregate staking ratio Θprtq. Intuitively, Θprtq also weakly increases with reward rate rt, but

prt,Θprtqq need to be jointly deteremined in equilibrium. Suppose the reward rate are higher,

agents will expect a larger staking ratio, which in turn leads to a decrease in rt. prt,Θprtqq

should satisfies Eq.(17). As mentioned in Section 3.3, the equilibrium is determined by the

system state, the aggregate staking reward ratio ρt.

Proposition 2. Equilibrium staking ratio. Higher total staking reward ratio leads to a

higher system staking ratio in equilibrium, i.e. @ρ1 ą ρ ą 0,

Θpρ1q ě Θpρq, (21)
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where ρ “ R
Q

is defined as the aggregate staking reward ratio (the number of tokens used for

rewards as a percentage of the total amount of tokens).

Proposition 2 gives a general expression on how aggregate staking reward affects staking

ratio in equilibrium. For a given platform productivity At, as the aggregate staking reward

ratio ρt increases, the corresponding overall staking ratio Θ increases. Note that Proposition

2 holds for any given distribution of agents’ wealth mpt, wtq. the result applies for both

cross-sectional comparison and time series analysis. Note that higher reward rate rt does

not necessarily lead to higher equilibrium staking ratio. Fixing the aggregate staking reward,

more wealth staked implies a low reward rate.

Figure 2 visualizes the optimal staking choice of heterogeneous agents and the generation

of equilibrium of the staking economy. Here we focus on comparative statics of reward rate

rt, thus the platform productivity At is fixed.10 To simplify the numerical solutions and focus

on our main interest, we make further assumption about user type Ut “ Upwtq here. Since

the user type reflects the demand for transactions, we assume Ut increases monotonically

and convexly with agent’s wealth, BU
Bw

ą 0 and B2U
Bw2 . This assumption is consistent with the

reality that richer people have greater demand for transaction. For each agent, the individual

staking ratio increases with reward rate. As for the comparison among crowds, the wealthier

agents have a greater optimal staking ratio, since after they have put enough tokens into

transactions, there are still wealth left to be used for staking.

As the blue curve in Figure 2 shows, the overall staking ratio Θprtq weakly increases

with staking reward rate rt. Since Θ can be seen as a weighted average of θ, combined

with Proposition 1, the above observation seems to be natural. In the grey interval, more

agents enter the staking market as reward rate increases. When the reward rate continues

to increase, all the agents have entered the market and they will gradually increase the

proportion of staking. The downward sloping black curve corresponds to (17). The unique

intersection (the black point in the figure) of these two curves gives the equilibrium pr˚
t ,Θ

˚
t q

at time t. Note that the platform productivity, At, influences the equilibrium not only by
10In fact, as At and Qt given, µt and σt is determined in our model. Here we straightly substitute the

corresponding value, the detailed analysis on token pricing will be discussed in later subsections.
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affecting the transaction convenience, but also through affecting the token price and its

dynamics, which we discuss next.
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Figure 2: Individual staking decisions and equilibrium staking ratio.
This figure shows the heterogeneous individual staking decisions. For each agent, the individual staking
ratio weakly increases with reward rate. As for the comparison among crowds, the agent who owns more
wealth will have a greater optimal staking ratio, since after they have invested enough tokens for transaction,
there are still tokens left to be used for staking. As Proposition 1 shows, the individual staking ratio curve
is a piecewise function. In the grey interval as this figure shows, more agents enter the staking market as
reward rate increases. When the reward rate continues to increase, all the agents have entered the market
and they will gradually increase the proportion of staking. The blue curve is the the sum of the individual
staking curve, which features the resulting overall staking ratio Θprtq. The downward sloping black curve
draws the points that satisfies the equilibrium Eq.(17). As a result, the only intersection point formed by
these two curves is the equilibrium situation pr˚

t ,Θ
˚
t q under the current system state. Here the system state

At is fixed to be 1, ρt “ 3%. µt and σt are endogenously given by the states, which will be analyzed later.
The selection of the parameters takes into account the reality of the staking market and relevant literature
(details in Appendix D.).

4.2 Staking Ratio & Price Dynamics

We link staking activities to token prices. In general, the token price appreciates when

more agents’ wealth flows into the platform, whether it is due to high platform productivity

and thus large transaction convenience, or due to greater participation in staking. We are

interested in the drift term µt of token prices, which depends on both agents’ control and
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wealth distribution.

Since At is the only exogenous state variable, all endogenous variables are functions of At

in equilibrium. In addition, the exogenous token supply, Qt, also affects the price. Denote

Pt “ P pAt, Qtq and apply Itô’s Lemma, we obtain

dPt “

„

BPt

BAt

Atµ
A `

BPt

BQt

Qtιt `
1

2

B2Pt

BA2
t

pAtσ
Aq2

ȷ

dt `
BPt

BAt

Atσ
AdZt. (22)

By matching the coefficients to Eq.(2), we obtain

µt “
1

Pt

„

BPt

BAt

Atµ
A `

BPt

BQt

Qtιt `
1

2

B2Pt

BA2
t

pAtσ
Aq2

ȷ

,

σt “
1

Pt

BPt

BAt

Atσ
A.

(23)

For each agent with a positive optimal staked value l˚t given rt, the marginal benefits of

staking is strictly larger than marginal transaction benefits. By the F.O.C., l˚t satisfies:

0 “

ˆ

µt ` rt ´ ct `
BΨt

Bnt

˙

BJ

Bw
` px̃t ` l˚t qσ2

t

B2J

Bw2
, (24)

where x̃t “

´

1´α
rt´ct

¯
1
α
AtUt. (See details in the proof of Proposition 2 in Appendix A.2.)

Since the user type is only realted to user’s wealth, we define Σt a subset of the feasible

domain of wealth, W . Agent with wealth wi will obtain a positive optimal staking choice if

and only if wi P Σt. By the fixed-point Eq.(17), the equilibrium staking ratio Θt ą 0, thus

Σt ‰ H. Integrating w over Σt and substituting into the market clearing condition Eq.(15),

we obtain:
0 “

1

σ2
pµ ` r ´ cq

ż

Σ

BwJ

BwwJ
mdw `

1

σ2

ż

Σ

BwJ

BwwJ

BΨ

Bn
mdw

` PQΘ `

ˆ

1 ´ α

r ´ c

˙
1
α

A

ż

Σ

Umdw,

(25)

where the time subscript is omitted, BwJ and BwwJ are the abbreviations of BJ
Bw

and B2J
Bw2

respectively. Then by substituting Eq.(23) and the fixed point Eq.(17) into Eq.(25), we
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obtain

0 “
BP

BQ
Qtιt `

BP

BA
AµA `

ˆ

BP

BA

˙2

p
Ix

P
`

QΘ

I
q

`

AσA
˘2

`
1

2

B2P

BA2

`

AσA
˘2

`

´ ρ

Θ
´ c ` In

¯

P,

(26)

where

I “

ż

Σ

BwJ

BwwJ
mdw, Ix “

A

I

ˆ

1 ´ α

r ´ c

˙
1
α

ż

Σ

Umdw, In “
1

I

ż

Σ

BΨ

Bn

BwJ

BwwJ
mdw. (27)

The resulting pricing equation Eq.(26) can be considered as a Black-Scholes-type partial

differential equation (PDE) with the following differences.11 First, the “theta” term in Black-

Scholes equation reflecting the variation of the derivative value over time is absent in Eq.(26).

Instead, the term BP
BQ

Qι captures the expected inflation from token issuance. Second, since

At, the fundamental productivity that drives token price, is not tradable, the coefficient of
BP
BA

is AµA rather than zero.12 Third, the additional third term on the RHS originally comes

from the risk term in the F.O.C. as Eq.(24) shows and features the price change risk from

holding tokens. Moreover, there is a “flow” term, p
ρ
Θ

´ c ` InqP , that reflects the excess

gain from staking rewards offsetting the staking cost and convenience loss. Note that BΨ
Bn

is

negative and represents the marginal decrease in transaction costs. Therefore, In is typically

negative.

Eq.(26) is an partial differential equation for P pAt, Qtq, which is difficult to solve in

general. Reconsidering the market clearing condition and the definition of Qt, we find that

P pAt, QtqQt “ {xt ` lt. It is actually an alternative form of Eq.(14). {xt ` lt represents

the aggregate wealth allocated to the platform and is independent with Qt, the aggregate

amount of tokens, since all the relevant variables are endogenous from At. Substituting

the preceding equation into Eq.(26) and calculate the partial differentials, we will derive an

ordinary differential equation (ODE). Moreover, based on the relationship between platform

productivity and the allocated value, we provide two boundary conditions for solving this
11The risk free rate of numeraire is normalized to zero.
12If the fundamental productivity is tradable, the coefficient of BP

BA should be rfA, where rf is the risk free
rate and is set to be zero in our model.
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ODE. Proposition 3 concludes the above results.

Proposition 3. Token price and dynamic. Pt is separable with the representation:

Pt “ P pAt, Qtq “
1

Qt

V pAtq, (28)

where V pAtq captures the aggregate wealth allocated to the platform, and satisfies the ODE:

0 “ V 1pAtqAtµ
A ` V 1pAtq

2

ˆ

IxpAtq

V pAtq
`

ΘpAtq

IpAtq

˙

pAtσ
Aq2 `

1

2
V 2pAtqpAtσ

Aq2

`

ˆ

ρt
ΘpAtq

´ ct ` InpAtq ´ ιt

˙

V pAtq,

(29)

where I, Ix and In are denoted as Eq.(27). The ODE is solved with a lower boundary

condition,

lim
AtÑ0

V pAtq “ 0, (30)

and an upper boundary condition,

lim
AtÑ8

V pAtq “

ż

W

wtmpt, wtqdwt. (31)

The drift µt and diffusion σt in the token price dynamic process Eq.(2) are given by

µt “
V 1pAtq

V pAtq
Atµ

A `
1

2

V 2pAtq

V pAtq
pAtσ

Aq2 ´ ιt,

σt “
V 1pAtq

V pAtq
Atσ

A.

(32)

The economic implications of Eq.(29) are similar to our previous discussion of Eq.(26).

Note that the subset of the whole crowd W , Σ, is determined by agents’ trade-offs between

transaction convenience and staking reward. Therefore, Σ is related to At that leads to I, Ix

and In to be functions of At. In addition, At the fixed point problem Eq.(17) is substituted,

the equilibrium reward rate rt is replaced by ρt
ΘpAtq

. As for the boundary conditions, the lower

boundary corresponds to the case that the platform is unproductive and thus attracts no

users (staking rewards would be zero too), while the upper boundary represents that when
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At tends to infinity, the entire population allocate their wealth to the platform. See proof

and details about the numerical solution in Appendix A.3. 13 Agents expect token price to

appreciate when they expect higher future productivity. Eq.(32) also implies that expected

inflation is reflected in the depreciation of token price.

As Proposition 3 shows, under a fixed inflation rate, in equilibrium, the expected price

drift, µt, and staking ratio, Θt, are both functions of platform productivity, At. Figure 3

shows the joint dynamic of these two variables. In general, greater staking ratio relates to

higher expected price appreciation. Specifically, µt exhibits a roughly convex increase in

p0, 1q with an additional lift when staking ratio is sufficiently high.

There are two main economic driving forces. The first is the direct effect of productivity

At. On the one hand, µt declines in At. As At grows, the pool of agents not entering the

economy shrinks, thus the potential future price appreciation is reduced, which generates the

similar user-base stabilizing effect of tokens as Cong et al. (2021d). On the other hand, Θt

also declines in At, since higher At results in larger transaction convenience. Therefore, the

joint dynamic of µt and Θt represents a positive relationship. This mechanism also explains

the steeper slope when staking ratio is low. It reflects the case when At is so high that most

wealth has already allocated in the platform.

The second mechanism helps explain the additional lift of µt when staking ratio is high.

When At is sufficiently low, it is better for agents to stake and earn reward than to obtain

transaction convenience. Almost all the tokens are staked, thus less tokens are in circulation

to clear any given amount of business transactions on the platforms where tokens are media

of exchange, especially comparing with the economy without a staking choice. Therefore, the

value of the tokens much appreciate for any fixed velocity of token.14 From another perspec-

tive, staking is equivalent to offering agents an alternative option when earning transaction

convenience is not very beneficial. Thus when At is low, the platform has already attracts

more adoption than the economy without staking mechanism. Then as At increases from a
13Numerically, we choose a sufficient small ϵ and correspondingly obtain a very large Apϵq, so that

V pApϵqq “
ş

W
wtmpt, wtqdwt ´ ϵ approximately. In addition, we decrease ϵ until the new resulting solu-

tion is numerically indistinguishable.
14In practice, this may partially explain the regular phenomenon that when a stakable asset is first launched

on an exchange, its price will rise significantly, even though its productivity is quite low as an incipient asset.
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low level, the potential future price appreciation reduces with a steeper slope. Appendix B.1

documents some extended discussions on the joint dynamic of staking ratio and price drift,

including an intuitive explanation for non-monotonic increase as Figure 3 shows.
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Figure 3: Staking ratio and price dynamics.
This graph shows the relationship between the system staking ratio Θt and the drift term of the token price
µt. As this graph shows, greater staking ratio relates to higher expected price appreciation. Specifically, µt

exhibits a roughly convex increase in p0, 1q with an additional lift when staking ratio is sufficiently high.

4.3 Token Excess Returns & UIP Violation

For each agent, whether she holds staked tokens or non-staked tokens, she take on the

return and risk of token price fluctuation, but loses the convenience of numeraire. Denote

the expected financial excess return of staked tokens over the numeraire as λt, then

λt ” Et

“

dPt ` rstaked token‰

“ µt ` rt ´ ct. (33)

Proposition 4. Token excess return. For any agent with any positive wealth, her optimal
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aggregate value of token holding, q˚
t , satisfies

λt “ ´
BΨ

Bnt

´
q˚
t σ

2
t BwwJ

BwJ
`

min t0,MU˚
x ´ MU˚

l u

BwJ
, (34)

where ´ BΨ
Bnt

ą 0 is the marginal convenience yield of holding numeraire, and MU˚
l and

MU˚
x are marginal utility of staked and tradable tokens respectively when agent’s controls are

optimized.

Eq.(34) has been rearranged so that the left-hand side contains only λt, which shows that

there are general predictable excess returns that arise as a compensation for convenience loss.

Especially, staked token is compensated with staking rewards as financial returns for the loss

of transaction convenience.

From another perspective, this is closely related to the uncovered interest rate parity

(UIP) in the foreign exchange market. If we treat token as cryptocurrency, then its price is

corresponding to the concept of exchange rate, while the staking reward rate corresponds to

the concept of interest rate. UIP implies that the expected returns on default-free deposits

across currencies are equalized, and thus the expected excess return λt should be zero.15

However, Eq.(34) shows that the uncovered interest parity does not hold, since there are

predictable excess returns that arise as a compensation for convenience loss. When the

convenience of numeraire increases, staked token is compensated with higher financial return.

This interpretation of UIP violation shares similar ideas with Valchev (2020) ’s explanation

of the UIP puzzle in classical asset types. The second term on the R.H.S represents the

impact of volatility risk. This correlates with the conclusions drawn from literatures that use

term structure models (e.g., Bansal, 1997; Lustig et al., 2019), where the difference between

domestic and foreign bond risk premia, expressed in domestic currency, is determined by

volatility difference of the permanent components of the stochastic discount factors. The

remaining term on the R.H.S. represents the trade-off between staking and non-staking.

There are two further insights for Eq.(34). First, the excess return λt is a system state that

15In the uncovered interest rate parity among currencies, λt “ Et

”

dSt ` iforeignt ´ ilocalt

ı

, where St is the
log exchange rate (foreign currency units per unit of local currency). The corresponding terms in Eq.(33) of
St, iforeign and ilocal are respectively dPt, rt ´ ct and the numeraire risk free rate (normalized to zero).
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can be considered exogenous when a single agent makes decision. Second, the convenience of

numeraire is a relative concept, which in fact reflects the difference in convenience between

numeraire and token.

The first fact suggests that Eq.(34) also implies a trade-off between staking and non-

staking by the agent. In other words, the staking reward prt ´ ctq should actually be consid-

ered as a compensation for the loss of transaction convenience. More discussion is provided

in Appendix A.4. The second fact gives two important corollaries. First, even based on the

same numeraire, the expected process return can be different for different tokens, since the

convenience of numeraire is a relative concept. Second, not only can we use a currency such

as USD as numeraire, we can also use any of the cryptocurrencies as numeraire. Therefore,

within the cryptocurrency market, UIP is Violation too.

5 Empirical Analyses

In this section, we test three predictions of our model in empirical: (i) Staking reward

rate rt affects agents’ staking choice and thus the overall staking ratio Θt. (ii) Staking ratio

Θt predicts price dynamics and token returns. (iii) Uncovered interest rate parity does not

work in the cryptocurrency market.

5.1 Linking Staking Reward Rate to Aggregate Staking

Proposition 2 predicts that a higher staking reward corresponds to a higher system stak-

ing ratio in equilibrium. To test this implication empirically, we calculate the daily average

of aggregate staking reward ratio and staking ratio for each token over its entire sample

period. To make it reasonable for comparisons among different tokens, we use the concept

of relative staking reward, i.e., the total amount of tokens used as staking reward divided

by the total amount of issued tokens, which is denoted as ρ in our model. Figure 4 plots

the relationship between staking reward and staking ratio, in which each token generates

one scatter point. The grey dashed line shows the linear fit of the scatters. It has a positive

slope, which indicates that the reward has a positive relationship with the staking ratio. As
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the figure shows, most scatters are in the region where the relative reward is less than 0.15,

while the other tokens might be strong influential points or “outliers”. After removing these

points, the linear smooth as the blue dashed line shows that the positive correlation still

holds, with an even larger slope. This visualizes the implication as Proposition 2 discusses.

Since the proposition is based on the equilibrium case, Figure 4 implicitly illustrates that

averaging over the time series roughly conforms to the equilibrium. We also visualize the

relationship with shorter data coverage (up to Oct. 2020) as Figure 4 (b) shows. Although

there are fewer stakable tokens in the earlier period, the significant positive correlation be-

tween the staking ratio and staking reward ratio still exists, which suggests the relationship

is robust in the sample period.

We further test the implication by panel regression. We take staking ratio, Θi,t, as

a dependent variable, and the (relative) aggregate staking reward ratio, ρi,t, as the main

explanatory variable. The variables are selected at the same period. Table 2 reports the

results. As column (1) shows, the estimated coefficient of ρi,t is positive and significant at

a 1% level. The value of estimation implies if the aggregate reward increases by 0.1 units,

then the staking ratio will increase by 0.080 (8.0%). We also test with control variables

including market value and price volatility. Their potential effect is that crypto assets with

greater market value are more trustworthy, making it more attractive for agents to lock in

their wealth. The results show a significant impact of control variables, but neither of these

two control variables affects the main effects of the staking reward ratio. We also run the

regression on data with different periods and fixed effects. 16 As Table 2 reports, the positive

correlation between staking reward and staking ratio is robust.

The previous test focuses on static properties in equilibrium, while for agents’ perspective,

the main concern is the reward rate they can earn and the resulting portfolio allocation. As

Proposition 1 shows, a higher reward rate rt will lead agents to stake more. Theoretically, the

resulting high staking ratio will decrease the reward rate and evolves to equilibrium, while in

practice, this process takes time so that Proposition 1 generates a predictable hypothesis on

the staking ratio. Empirically, we test the prediction by panel regressions as Table 3 reports.
16We fixed time effect but not the crypto-specific effect in this test, since the more significant effect in the

time series, in practice, is the endogenous decreasing of the reward (similar to Bitcoin Halving).
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Figure 4: Staking ratio versus staking reward.
This figure plots the relationship between staking ratio Θt and staking reward ratio ρt. In panel (a), for each
token, we calculate its mean staking ratio and reward over the entire time interval (up to Feb. 2022) and
then generate one point. The grey dashed line is the linear regression of all scattered points, which shows a
positive correlation between the two variables. After removing the influential points with large rewards, the
linear regression is still upward sloping and even steeper as the blue dashed line shows. This plot visualizes
the results of Proposition 2, i.e., a higher aggregate staking reward ratio leads to a higher system staking
ratio. In addition, the size and color of the points indicate the standard deviations of the reward ratio and
staking ratio respectively. In panel (b), we do the same thing with shorter data coverage (up to Oct. 2020).
Although there are fewer tokens, the main relationship between the staking ratio and the staking reward
ratio still holds, which implies robustness in the different sample periods.
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Table 2: Staking ratio with respect to the staking reward ratio.
This table tests the relationship between staking ratio, Θi,t, and the aggregate staking reward ratio, ρi,t, in
the same period. The coefficient of ρi,t is significantly positive, which implies higher staking reward results
in a higher staking ratio as Proposition 2 shows. The effect is robust under multiple tests, including controls
(market value and volatility), time fixed effects and different horizons (weekly, 14-day and 30-day).
˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

StakingRatioi,t

7-day 14-day 30-day
(1) (2) (3) (4) (5) (6)

ρi,t 0.800˚˚˚ 0.843˚˚˚ 0.838˚˚˚ 0.865˚˚˚ 0.904˚˚˚ 0.922˚˚˚

p19.420q p20.477q p20.250q p20.334q p14.589q p9.429q

1
100 logpCapqi,t 1.165˚˚˚ 1.187˚˚˚ 1.328˚˚˚ 1.369˚˚˚ 1.507˚˚˚

p8.275q p8.379q p7.358q p5.252q p3.804q

Volatilityi,t 0.140 0.392˚˚˚ 0.549˚˚˚ 0.816˚˚

p1.395q p3.218q p2.664q p2.064q

Fixed Effects
Time Y Y Y

R2 0.088 0.103 0.104 0.108 0.117 0.121

Panel A in Table 3 focuses on the cross-sectional situation where, in practice, agents face

multiple tokens with different staking reward rates at the same time. We use the reward rate

in the previous period, ri,t´1, as the main independent variable, and the change in staking

ratio, ∆Θi,t “ Θi,t ´ Θi,t´1, as the dependent variable. The estimated coefficients of reward

rate are all significantly positive, which implies larger reward rate predicts a positive change

of staking ratio. For example, as column (6) shows, if the annual reward rate increases by

1%, then the overall staking ratio will increase by 0.016% in the following week. This is

a large effect considering the size of the time window and the magnitude of the change in

the rewards rate in the staking economy. Market cap and token price volatility are used

as control variables, since they may be related to the platform’s user base and risk, thus

affecting the overall staking ratio. Fixed effects are also considered. In addition, we also run

the test with the staking ratio Θi,t as the dependent variable. The estimated coefficient of

reward rate is still positive and significant.

Panel B in Table 3 replaces the main independent variable with the change in reward

rate in the previous time span, ∆ri,t´1 “ ri,t´1 ´ ri,t´2. This will erase the cross sectional
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difference in the size of the reward rate of tokens, and focus on time series effects. In practice,

agents can also adjust their staking choices for a given token based on the change in reward

rate over time. We regress the change in staking ratio on the change of reward rate of the

previous period. All the regressions in Panel B report the positively estimated coefficient

of ∆ri,t´1 and, in particular, these results are significant at least at the 10% level in the

regressions on weekly data. The significantly positive coefficient proves that people tend

to stake more as the reward rate rises. For example, column (6) implies that for a certain

token, if there is a 1% increase in its reward rate in the previous week, then its overall

staking ratio will increase by 0.033% in the following week. Market value and volatility are

also considered as controls. Note that in columns (7) and (8), the estimation is still positive

but not significant. This can be explained by the fact that the super-long horizon contains

more changes and perturbations, even including the dynamic adjustment process between

the reward rate and the staking ratio section 4.1 discusses.

5.2 Equilibrium Staking Ratio and Token Price Dynamics

Our model shows that the staking ratio positively predicts token price changes. To test

this prediction, we first calculate the log token price change in each period for each token,

rpricei,t “ logp
Pi,t

Pi,t´1
q. We regress rpricei,t on the staking ratio in the previous period. As

many papers have discussed, the market and market value factors have an important impact

on price change, which also holds for the cryptocurrency market. Therefore, we add the

current period market factor and the previous period log token market cap to the regression

as controls. The calculated data for rMKT is shared by Cong et al. (2021a), and the original

data is collected from CoinMarketCap.com.
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Table 3: Staking ratio with respect to the staking reward rate.
This table presents the analyses of how people’s staking choice is affected by the reward rate. In Panel A, we use the reward rate of the previous
period, ri,t´1 as independent. The regressions show significantly positive coefficient, which implies that larger reward rates predict the positive
change of staking ratio ∆StakingRatioi,t . This effect is robust with controls (market value and volatility), fixed effects (crypto-specific effect, time
effect and two-way effect), and in different horizons (weekly, 14-day and 30-day). In Panel B, we replace ri,t´1 by the change of reward rate of the
previous period, ∆ri,t´1 , as the independent variable. The significantly positive coefficient implies that people tend to stake more as the reward
rate rises.
˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

∆StakingRatioi,t

7-day 14-day 30-day
Panel A (1) (2) (3) (4) (5) (6) (7) (8)
ri,t´1 0.008˚˚˚ 0.008˚˚˚ 0.008˚˚˚ 0.015˚˚˚ 0.008˚˚˚ 0.016˚˚˚ 0.026˚˚˚ 0.043˚

p2.868q p2.780q p2.754q p2.997q p2.973q p3.143q p2.600q p1.930q

1
100 logpCapqi,t´1 ´0.008 ´0.008 ´0.043 0.009 ´0.012 ´0.037 ´0.012

p´0.454q p´0.422q p´1.115q p0.409q p´0.169q p´0.260q p´0.037q

Volatilityi,t´1 0.003 0.005 0.012 0.014 0.002 0.046
p0.266q p0.360q p0.824q p0.819q p0.058q p0.426q

Fixed Effects
Crypto Y Y Y Y
Time Y Y Y Y

R2 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005

Panel B (1) (2) (3) (4) (5) (6) (7) (8)
∆ri,t´1 0.022˚ 0.022˚ 0.022˚ 0.026˚ 0.030˚˚ 0.033˚˚ 0.017 0.010

p1.654q p1.678q p1.682q p1.898q p2.155q p2.375q p0.884q p0.369q

1
100 logpCapqi,t´1 ´0.016 ´0.015 ´0.067˚ ´0.004 ´0.030 ´0.068 ´0.067

p´0.884q p´0.821q p´1.769q p´0.193q p´0.428q p´0.487q p´0.212q

Volatilityi,t´1 0.006 0.007 0.015 0.014 0.002 0.043
p0.474q p0.486q p1.003q p0.850q p0.051q p0.397q

Fixed Effects
Crypto Y Y Y Y
Time Y Y Y Y

R2 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.000
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Table 4 reports the results that the staking ratio predicts price appreciation. The esti-

mated coefficient of staking ratio is significantly positive, which implies that a higher staking

ratio predicts larger token price appreciation. As column (3) shows, if the staking ratio of a

token increases by 1%, its price will appreciate by 0.221% next week. Considering there is

often a large variation in the staking ratio, this effect can have a significant impact on price.

This result remains robust and significant with the addition of control variables. Therefore,

the effect of price appreciation due to the staking ratio is not explained by the market value

effect. In addition, the estimated coefficients of rMKT and log capitalization are consistent

with related research.

As Section 4.2 discusses, the key to explaining this effect is that the staking ratio closely

affects the number of tokens in circulation on the platform. Since there is always demand

for the transaction, when the staking ratio is greater, it means that fewer tokens are used

as a medium to clear the market, and therefore the value of the token appreciates more for

any given velocity of a token.17

5.3 UIP Violation

Uncovered Interest Parity (UIP) plays a central role in exchange rate determination in

most models, which implies that the expected exchange rate depreciation offsets any potential

gains from interest rates. However, numerous empirical studies have shown that there is a

so-called “UIP puzzle” that an increase in the foreign interest rate relative to the local one

is associated with an increase in the excess return on the foreign currency over the local

currency. As a practical application of UIP violation, the carry trade strategy is widely used

in the exchange market.

In the staking cryptocurrency market, we can also think about similar issues. Staking

reward rate can be considered as interest rate, while token price can be viewed in the context

of the exchange rate. Then the UIP implies that

Et rlogPt`1 ´ logPts “ rft ´ prt ´ ctq, (35)
17Token velocity is immaterial in our continuous-time formulation. In general, token staking and lockup

can be viewed as reducing their velocity in the ecosystem.
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Table 4: Staking ratio and token prices.
This table presents the analyses of how the staking ratio predicts token price appreciation. The main
independent is the staking ratio of the previous period, StakingRatioi,t´1 . The dependent rpricei,t is the
log price change. The results show that the coefficient is significantly positive, which implies that a higher
staking ratio will predict higher token price appreciation. Considering that there exists market effect and
market value effect in the cryptocurrency market, we also add the market price return rMKTt and the market
cap term logpCapqi,t´1 as controls. After adding these controls, the estimated coefficient of staking ratio is
still significant. We also do the test in different horizons and with fixed effects to show the robustness of the
results.
˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

rpricei,t
7-day 14-day 30-day

(1) (2) (3) (4) (5)
StakingRatioi,t´1 0.193˚˚ 0.183˚˚ 0.221˚˚˚ 0.447˚˚˚ 0.720˚

p2.094q p2.148q p2.621q p2.830q p1.808q

rMKTt 0.821˚˚˚ 0.790˚˚˚ 0.617˚˚˚ 0.854˚˚˚

p15.863q p15.396q p9.226q p8.000q

logpCapqi,t´1 ´0.956˚˚˚ ´1.487˚˚˚ ´3.457˚˚˚

p´6.191q p´4.973q p´4.139q

Fixed Effects
Crypto Y Y Y Y Y

R2 0.003 0.150 0.171 0.159 0.300

where rft is the local interest rate at time t.

In our model, the uncovered interest rate parity does not work in the cryptocurrency

market. To empirically test if UIP works, we use the equation with some version of the

original regression specification of Fama (1984) as follows:

λi,t`1 “ α ` βprft ´ ri,t ` ci,tq ` ϵi,t`1,

where λi,t “ logPi,t`1 ´ logPi,t ` pri,t ´ ci,tq ´ rft ,
(36)

where i represents cryptocurrency i. Under UIP, β “ 0, i.e. the excess return λt is not

forecastable by the current interest rate difference. On the contrary, numerous empirical

researches have found that β is not equal to 0, and even find that β ă 0 so that higher

interest rates are associated with higher excess returns. For the local currency, we examine

in turn each asset in our sample as well as the US dollar, Bitcoin, and Ethereum. We also

examine different time horizons as Valchev (2020) does.
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Table 5 reports the regression results. In each row, we report the result of a specific

asset as a local currency, i.e., the exchange rate of each token is converted to the price

denominated in such asset. All the results show a significantly negative estimation of β,

which violates the UIP. Moreover, β ă 0 and is close to 1, which implies that a higher

interest rate will predict a positive appreciation of the exchange rate. This leads to potential

arbitrage opportunities. The regression results with different tokens as the local currency all

demonstrate the UIP violation, which implies this phenomenon exists not only among the

stakable tokens in our sample, but also exists when comparing with traditional currencies

and mainstream non-stakable cryptocurrencies.

6 Crypto Carry

As an extension of UIP violation, we test the predictability of crypto carry to token

excess return and the performance of the crypto carry trade portfolio.

6.1 Carry in Other Asset Classes

Carry trades, which go long in baskets of currencies with high interest rates and short in

baskets of currencies with low interest rates, have been shown to obtain high Sharpe ratios.

The portfolio performance, the predictability of carry to excess returns and the possible

explanation has been widely studied (e.g., Lustig et al., 2014; Bakshi and Panayotov, 2013;

Burnside et al., 2011; Menkhoff et al., 2012; Koijen et al., 2018; Daniel et al., 2017).

Carry strategies are profitable for a host of different asset classes, including global eq-

uities, global bonds, commodities, US Treasuries, credit, and options. But crypto assets

may differ from any of the traditional asset classes in terms of characteristics. On the other

hand, the characteristics of the cryptocurrency markets operation may also generate new

features and arbitrage opportunities (e.g., Makarov and Schoar, 2020). Therefore, carry and

related contents on crypto assets may exhibit unique properties, which is discussed in recent

literature (e.g., Franz and Valentin, 2020).
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Table 5: Test on the UIP violation.
This table reports the panel regression results of UIP test. The regression model is shown as Eq.(36). In each row, we use a different asset as
local currency and report the estimated coefficients of β with different data horizons. The estimated coeficient of β and its t-statistic is reported.
All the results shows significantly negative estimation of β, which prove that UIP violates. Moreover, β ă 0 implies that higher interest rate will
predict positive appreciation of exchange rate. The table also shows the results are consistent with the relevant research results of classic assets,
and are robust among currencies and cryptocurrencies.

Local Horizon: 7-day Horizon: 30-day Local Horizon: 7-day Horizon: 30-day
Currency Coef., β t-statistic R2 Coef., β t-statistic R2 Currency Coef., β t-statistic R2 Coef., β t-statistic R2

Currency & mainstream cryptocurrencies.
US Dollar ´0.98 p´49.40q 0.38 ´0.93 p´9.95q 0.11 Ethereum ´0.99 p´59.13q 0.46 ´0.95 p´13.52q 0.17

Bitcoin ´0.99 p´59.78q 0.47 ´0.96 p´14.04q 0.18

Cryptocurrencies in our sample.
1inch ´0.98 p´34.07q 0.48 ´0.83 p´6.08q 0.14 kyber ´1.01 p´23.59q 0.33 ´0.99 p´4.62q 0.10

aave ´1.01 p´39.36q 0.41 ´0.99 p´8.18q 0.14 livepeer ´1.01 p´25.14q 0.34 ´0.85 p´4.44q 0.07

aion ´0.97 p´25.07q 0.39 ´0.80 p´5.29q 0.12 lto ´1.05 p´18.90q 0.31 ´0.99 p´5.92q 0.18

algorand ´0.98 p´54.28q 0.43 ´0.94 p´14.02q 0.18 matic ´0.96 p´31.18q 0.26 ´0.90 p´6.27q 0.06

ark ´0.99 p´35.74q 0.50 ´0.91 p´9.35q 0.24 mina ´0.99 p´32.38q 0.42 ´0.81 p´6.15q 0.11

avalanche ´1.03 p´36.32q 0.36 ´1.12 p´8.70q 0.13 mirror ´0.98 p´34.23q 0.46 ´0.97 p´6.51q 0.15

band ´1.03 p´43.11q 0.40 ´1.02 p´10.87q 0.16 near ´1.00 p´41.01q 0.41 ´1.01 p´9.61q 0.14

bifi ´0.98 p´34.75q 0.39 ´0.92 p´6.84q 0.10 nem ´0.97 p´31.84q 0.58 ´0.79 p´8.08q 0.29

binance-sc ´0.99 p´45.76q 0.52 ´0.92 p´8.61q 0.15 neo ´1.00 p´33.61q 0.46 ´0.89 p´8.88q 0.21

bitbay ´0.95 p´7.91q 0.12 ´1.36 p´3.64q 0.34 nuls ´1.01 p´28.53q 0.42 ´0.96 p´6.89q 0.17

cardano ´0.98 p´44.57q 0.43 ´0.99 p´10.53q 0.16 oasis ´0.99 p´33.83q 0.40 ´0.91 p´6.89q 0.11

cosmos ´0.99 p´55.54q 0.43 ´0.95 p´12.86q 0.16 pancakeswap ´0.99 p´40.05q 0.45 ´0.89 p´8.55q 0.14

curve ´1.00 p´39.16q 0.45 ´0.93 p´9.65q 0.19 peakdefi ´0.95 p´32.63q 0.34 ´0.85 p´7.96q 0.12

dash ´0.98 p´33.19q 0.46 ´0.79 p´5.77q 0.11 polkadot ´1.02 p´47.72q 0.45 ´1.06 p´11.43q 0.18

decred ´0.99 p´55.98q 0.45 ´0.97 p´13.34q 0.17 qtum ´0.98 p´38.12q 0.54 ´0.88 p´10.10q 0.28

dfinity ´0.94 p´20.84q 0.42 ´0.90 p´3.79q 0.11 secret ´1.02 p´39.21q 0.38 ´1.15 p´8.95q 0.13

dodo ´0.91 p´24.55q 0.40 ´0.83 p´5.40q 0.11 smartcash ´0.99 p´26.16q 0.38 ´0.83 p´6.83q 0.16

elrond ´1.00 p´41.89q 0.42 ´1.07 p´9.33q 0.14 snx ´1.02 p´51.35q 0.41 ´1.08 p´12.35q 0.15

eos ´0.99 p´51.72q 0.43 ´0.91 p´11.93q 0.15 solana ´0.97 p´34.06q 0.37 ´0.93 p´7.58q 0.11

eth2.0 ´1.01 p´52.72q 0.46 ´1.02 p´12.05q 0.17 stafi ´1.00 p´32.80q 0.32 ´0.98 p´8.11q 0.12

fantom ´0.99 p´30.47q 0.21 ´1.06 p´8.80q 0.09 stake-dao ´0.95 p´16.07q 0.20 ´0.83 p´3.07q 0.05

flow ´0.94 p´26.56q 0.41 ´0.80 p´5.40q 0.11 sushi ´0.98 p´40.81q 0.45 ´0.90 p´9.69q 0.17

harmony ´0.98 p´37.35q 0.32 ´0.92 p´6.19q 0.06 terra ´0.99 p´38.65q 0.33 ´0.86 p´7.57q 0.08

icon ´0.97 p´31.34q 0.45 ´0.85 p´7.25q 0.17 tezos ´1.00 p´58.02q 0.45 ´0.94 p´12.96q 0.16

idex ´1.00 p´41.29q 0.36 ´0.96 p´9.50q 0.12 tron ´0.98 p´57.66q 0.46 ´0.91 p´12.56q 0.15

injective ´0.93 p´24.45q 0.38 ´0.86 p´5.36q 0.13 wanchain ´0.98 p´26.99q 0.43 ´0.90 p´7.99q 0.23

iotex ´0.98 p´29.51q 0.40 ´0.85 p´6.89q 0.14 waves ´0.99 p´52.11q 0.42 ´0.95 p´12.31q 0.15

irisnet ´1.00 p´27.14q 0.39 ´0.98 p´7.47q 0.18 wax ´0.98 p´31.31q 0.27 ´1.02 p´6.17q 0.06

kava ´1.00 p´47.25q 0.41 ´0.96 p´10.53q 0.13 yearn ´1.00 p´37.70q 0.35 ´0.97 p´8.75q 0.11

kusama ´1.01 p´39.94q 0.35 ´1.09 p´11.74q 0.17 zcoin ´0.99 p´24.61q 0.36 ´0.87 p´6.72q 0.16
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One of the direct corollary to the violation of UIP is the existence of carry. Koijen et al.

(2018) define carry as a general concept of any asset. For any asset, carry is defined as its

futures return, assuming that price stays the same, i.e.

return ” carry ` Epprice appreciationq ` unexpected price shock. (37)

For example, the classic definition of currency carry is the local interest rate in the

corresponding country. Following Koijen’s general definition of carry, we derive crypto carry

based on our model as Eq.(38) shows, which is close to the form of currency carry.18

carryt ”
rt ´ ct ´ rf

1 ` rf
. (38)

Table 6 summarizes annualized carry and excess return of all the tokens in our sample.

Sample means and standard deviations are reported. We also include the US Dollar as one

of the assets for which the carry and excess return are, by definition, equal to zero.

6.2 Crypto Carry Trade Portfolio Returns

Tokens in the asset pool are ordered by their carry in the previous period, and then

divided into three groups, i.e. the top x% of assets, the bottom x% and the middle group.

Then we construct a carry trade portfolio by going long high carry group with equal weight

and going short low with equal weight at the end of each week. For long tokens, we also

stake them to earn staking reward rate, while for the short assets, we also compensate for

the staking reward rate. The choice of x does not affect our observation of the main charac-

teristics of the carry trade portfolio. The portfolio is rebalanced every week.19 Considering

the abnormal fluctuation of token price and staking ratio when a staking project is first

launched, our weekly asset pool does not include new staking projects that come out within
18This formula is derived based on the assumption that covered interest rate parity holds, where Koijen

et al. (2018) also claim this assumption when obtaining the formula of currency carry.
19We also assume that the staking rules allow a one-week stake period. Most stakable tokens do offer such

flexible staking options, and our data of reward rate are also selected in the corresponding options. For some
rare exceptions, we can assume the existence of some derivatives that would enable such an asset allocation.
Such derivatives are gradually appearing in practice.
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Table 6: Excess return and carry.

Token Excess Return Carry Token Excess Return Carry
(%, Annual) (%, Annual) (%, Annual) (%, Annual)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

1inch 2.67 17.52 2.02 4.38 kyber 7.74 18.19 4.32 2.04

aave 7.83 23.38 4.02 0.86 livepeer 59.79 38.12 58.51 26.72

aion 8.76 16.37 5.57 0.48 lto 10.65 18.69 6.80 0.85

algorand 8.31 21.25 6.04 2.72 matic 32.26 40.29 23.53 12.09

ark 9.55 17.61 8.11 0.50 mina 13.63 22.56 11.75 0.28

avalanche 19.15 37.19 9.99 2.03 mirror 40.07 36.68 43.10 24.83

band 15.37 25.93 12.70 1.51 near 18.59 23.51 11.50 1.20

bifi 10.12 20.00 7.95 3.57 nem ´1.88 13.54 ´1.35 0.49

binance-sc 13.50 15.18 11.33 3.31 neo 1.94 15.92 0.82 0.91

bitbay 18.36 77.83 1.06 0.74 nuls 10.50 18.76 8.18 0.40

cardano 9.54 18.32 5.69 1.87 oasis 18.97 25.39 15.25 2.31

cosmos 12.30 19.99 8.91 1.48 pancakeswap 75.05 45.23 71.38 22.63

curve 5.49 21.52 3.03 1.86 peakdefi 43.78 37.06 43.09 17.31

dash 6.43 20.20 5.20 0.71 polkadot 16.07 20.28 11.90 1.39

decred 7.96 15.95 5.90 1.46 qtum 6.52 14.86 4.65 1.32

dfinity 9.26 16.95 14.49 2.32 secret 34.66 30.76 26.69 2.62

dodo 56.18 23.97 65.74 5.00 smartcash 4.05 18.53 1.62 0.28

elrond 26.07 30.28 17.44 7.12 snx 30.47 32.06 24.96 20.11

eos 4.72 16.53 4.39 3.94 solana 14.35 23.15 7.73 2.48

eth2.0 15.84 17.80 11.58 12.21 stafi 24.71 44.53 20.21 2.14

fantom 41.37 63.53 28.12 22.17 stake-dao 24.03 27.56 22.59 9.17

flow 4.49 14.05 9.21 0.71 sushi 8.75 19.58 10.38 4.47

harmony 18.14 28.10 10.31 0.79 terra 16.14 28.80 8.65 3.09

icon 19.60 21.11 16.03 2.45 tezos 6.96 17.90 5.38 0.82

idex 9.28 24.32 5.88 6.18 tron 5.65 16.08 3.36 1.69

injective 1.63 14.44 4.00 0.36 wanchain 10.30 16.13 7.37 0.30

iotex 10.85 22.54 8.50 2.70 waves 7.21 20.22 3.96 1.70

irisnet 15.33 23.31 9.64 0.39 wax 7.23 21.98 2.80 2.06

kava 22.63 27.97 18.93 20.06 yearn 9.55 30.27 4.68 2.79

kusama 20.71 25.96 13.99 0.84 zcoin 18.18 25.12 14.87 3.53

US Dollar 0.00 0.00 0.00 0.00

a week.

The performance of such crypto carry trade mainly measures the cross-sectional effect.

Since we long high carry and short low carry, the portfolio carry is always positive. If the

portfolio always achieves positive returns, it means that in the cross-section, assets with

higher carry have greater aggregate returns.

The red curve in Figure 5 plots the cumulative return of such carry trade strategy. It

shows an overall increasing and large cumulative returns. Especially, in the cryptocurrency

market where price volatility is huge, such a strategy performs a relatively smooth growth,

which implies the carry premia always exists. For further discussion, we also report two

related strategies. The grey line shows the performance of the same carry portfolio but
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without staking. That is, for long tokens, we do not stake them, and for the short assets, we

also do not compensate for the staking reward rate. The strategy also exhibits increasing

cumulative returns, which implies that the carry strategy earns excess returns not only from

carry (staking reward) but also from price appreciation. Moreover, the blue line reports

the performance of the same carry portfolio but is rebalanced every month. It exhibits less

returns than 1W-carry trade. There are two potential explanations. First, as we discussed

in our model, the reward rate will decrease with the staking ratio mechanically. Therefore,

investors are unable to earn high carry consistently for a long period without timely position

adjustments. Second, the reversal of reward rate further influences the staking ratio, which

then weakens the effect on price appreciation as Table 4 reports.

0

100

200

300

400

2020-01 2020-07 2021-01 2021-07 2022-01
Date

C
um

ul
at

iv
e 

R
et

ur
n 

(%
) 1W-Carry Trade (staking)

1W-Carry Trade (without staking)

1M-Carry Trade (staking)

Figure 5: Cumulative returns of long-short carry trade strategies.
This figure shows the cumulative return of long-short carry strategies. The red line is the benchmark strategy.
Tokens in the asset pool are ordered by their carry in the previous period. We go long the top x% high
carry tokens with equal weight and short the bottom x% tokens with equal weight. For long tokens, we also
stake them to earn the staking reward rate, while for the short assets, we also compensate for the staking
reward rate. The portfolio is rebalanced every week. The choice of x does not affect our observation of
the main characteristics. Here we set x “ 50. Based on the benchmark strategy, the grey curve reports
the performance of the strategy without earning or compensating staking rewards, the blue curve shows the
performance of the strategy rebalanced every month.

The first row in Table 7 reports statics of the 1-Week carry strategy, including the

annualized mean, standard deviations, skewness, kurtosis, maximum drawdown and the
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Table 7: Statistics of carry strategies.
This table reports the statistics of three strategies. The first row reports the results of the long-short carry
strategy which is corresponding to the red curve in Figure 5, The rows below report long strategies, including
equal-weighted benchmark and the strategy that long only top 50% high carry tokens with equal weight. For
each strategy, the annualized mean, standard deviations, skewness, kurtosis, maximum drawdown (MDD)
and Sharpe ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio
(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy:
1W-Carry Trade 68.87 42.60 ´0.11 6.86 26.23 1.62

Long Strategy:
EW 95.24 45.78 ´1.12 6.59 32.82 2.08
EW High carry 121.08 50.07 ´0.89 7.10 32.62 2.42

Sharpe ratio. The results show that the carry strategy has a significantly greater positive

return and yields a Sharpe ratio of 1.62. Examining the higher moments of the crypto

carry trade return, we find the strong negative skewness associated with the currency carry

trade shown by Brunnermeier et al. (2008). Moreover, the carry strategy exhibits excess

kurtosis, indicating fat-tailed positive and negative return, which is consistent with Koijen

et al. (2018)’s findings for currencies and commodities.

We also report the statistics for equal-weighted strategy in Table 7, i.e. borrow US dollar

and go long all tokens in our sample with equal weight. Since the cryptocurrency market is

generally in a bull market from 2019 to 2021, the equal-weighted benchmark earns extremely

high beta returns and therefore has a very high Sharpe ratio of 2.08, while the carry strategy

as a long-short strategy does not earn market returns. As a comparison, we test the strategy

that borrows US dollar and buys 50% high carry tokens with equal weight. The order of

the tokens is evaluated every week. Such a strategy outperforms the simple equal-weighted

portfolio with a Sharpe ratio of 2.42. Figure 6 plots the cumulative returns of these two

strategies. The comparison also illustrates the positive correlation of carry to excess returns.

6.3 Excess Return Predicted by Carry

Table 7 suggests that carry is a unique predictor of return. Considering Eq.(33), the

predictability may be from two sources: the crypto carry itself, and any price appreciation
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Figure 6: Cumulative returns of long strategies.
This figure shows the cumulative returns of the following two strategies. The grey curve corresponds to the
equal-weighted benchmark, i.e. borrow US dollar and long all the tokens with equal weight. The red curve
shows the result of the top 50% EW strategy, i.e. borrow US dollar and go long top 50% high carry tokens
with equal weight. The order of the tokens is evaluated every week.

that is related to or predicted by carry. To better understand the relationship between carry

and expected returns, we follow Koijen et al. (2018) to run the following panel regression:

Excess Return i,t`1 “ ai ` bt ` cCarryi,t ` ϵi,t, (39)

where ai and bt are crypto and time fixed effect respectively. By Eq.(33), c “ 0 means the

total return is unpredictable, while c “ 1 suggests that expected return moves one-for-one

with carry. If c P p0, 1q, it implies that the market takes back part of the carry, i.e. investors

cannot fully earn carry as return.

Table 8 reports the results with and without fixed effects. Weekly and 14-day data are

both used for robustness. Without crypto specific and time fixed effects, c represents the

total predictability of returns from carry from both its passive and dynamic components.

Crypto-specific fixed effects will remove the predictable return component of carry coming

from passive exposure to tokens with different unconditional average returns.
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The results in Table 8 imply that carry is a strong predictor of expected return. In

Columns (1) and (3), without crypto specific fixed effect, the estimated coefficient is around

1, which means that high staking reward rate tokens neither depreciate nor appreciate on

average. Hence, investors can earn reward rate differential using carry trade strategy. This

is similar to the relevant findings for currency (Fama, 1984; Koijen et al., 2018).

Table 8: Carry and excess returns
This table reports the results from the panel regression of Eq.(39), estimated c and t-statistics are reported.
Without crypo and time fixed effects, c represents the total predictability of returns from carry from both its
passive and dynamic components. Including crypto specific fixed effect will remove the predictable return
component of carry coming from passive exposure to tokens with different unconditional average returns.
˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

Panel A: 7-day ExcessReturni,t

(1) (2) (3) (4)
Carryi,t´1 0.987˚˚˚ 0.961˚˚˚ 1.004˚˚˚ 0.998˚˚˚

p37.587q p20.385q p45.090q p24.283q

Fixed Effects
Crypto Y Y
Time Y Y

R2 0.261 0.095 0.347 0.136

Panel B: 30-day ExcessReturni,t

(1) (2) (3) (4)
Carryi,t´1 1.019˚˚˚ 0.625˚˚ 1.067˚˚˚ 0.691˚˚˚

p6.900q p2.358q p8.363q p2.939q

Fixed Effects
Crypto Y Y
Time Y Y

R2 0.049 0.006 0.074 0.010

Note that once crypto-specific effect is fixed, as Columns (2) and (4) in Panel B shows,

the estimated c is significantly positive but less than 1. This implies the market takes back a

fraction of carry. In other words, time series carry predicts less expected return. According

to Koijen et al. (2018), this is also found in commodities. When a commodity has a high spot

price relative to its futures price, implying a high carry, the spot price tends to depreciate

on average, thus lowering the realized return on average below the carry. For crypto in the

staking economy, however, a different mechanism may be responsible for this phenomenon.

In our model, while a high reward rate leads to a high staking ratio and thus a higher
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price appreciation, there is a downward adjustment effect of the reward rate in the time

series. As the sum of carry (approximately equal to reward rate) and price appreciation, the

excess return is then influenced by the adjustment. Comparing the results of weekly data

with those of 30-day data, the downward adjustment effect is also magnified when the time

window becomes larger, and thus the estimated c decreases in Columns (2) and (4) of Panel

B. This also explains why there is such a difference in the results with and without fixed

cross-sectional effects. In the case of commodity, the estimate of c is significantly smaller

than 0 regardless of the fixed effect.

Overall, crypto carry exhibits characteristics partly similar to currencies and partly sim-

ilar to commodities, rationalized by the mechanism of staking itself.

7 Conclusion

In addition to offering a convenience yield for transactions in digital networks, tokens

are frequently staked (and slashed) for base-layer consensus generation or for incentivizing

economic activities in DeFi protocols and platform development, and consequently earn

rewards akin to deposit interests. To analyze the economics of staking, we build a continuous-

time model of a token-based economy where agents endogenously allocate wealth on and

off a digital platform and use tokens either to earn rewards or to transact. We solve the

mean field game with stochastic controls and show that the equilibrium staking ratio is a

fundamental variable linking staking to the endogenous reward rate and token price. The

model rationalizes violations of the uncovered interest rate parity and significant crypto carry

premia that we empirically document. For example, a strategy buying high carry tokens and

shorting low carry tokens yields a Sharpe ratio of 1.6, which can be attributed to transaction

convenience in certain digital networks. We relate cryptocurrencies to other major asset

classes such as currencies and commodities and verify model implications in the data. In

particular, the staking ratio resembles liquidity and market depth since a high staking ratio

leads to a lower amount of available tokens available for trade. Furthermore, the staking

ratio is proportional to the reward rates in the cross-section but negatively correlated to
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reward rates in the time series; it positively predicts the returns of cryptocurrencies.

It is worth pointing out that the framework can be used to understand long-run transi-

tions of many platform tokens to security tokens as defined in Cong and Xiao (2021) and

Cong et al. (2021a). For example, DeFi projects increasingly lock up both native and non-

native tokens whose transaction usage significantly declines. Instead, these tokens entitle

the stakers to cash flows from fees (and subsidies in the short run), which adds a security

token dimension. Optimally designing such a transition and understanding the implications

of staking with multiple tokens constitute interesting future research.
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Appendix

A. Proofs for Propositions

A.1 Proof of Proposition 1

Consider the HJB equation as Eq.(12) shows, the marginal utility of staked and non-staked
tokens are

MUl “ pµt ` rt ´ ct `
BΨ

Bnt
qBwJ ` pxt ` ltqσ

2
t BwwJ,

MUx “

ˆ

µt ` p1 ´ αq

ˆ

AtUt

xt

˙α

`
BΨ

Bnt

˙

BwJ ` pxt ` ltqσ
2
t BwwJ.

(A.1)

Note that MUx and MUl contains some common terms, including price appreciation µ, loss of
numeraire convenience ´ BΨ

Bnt
and volatility risk of token price. Agents will always obtain these part

of utility once they hold tokens. Therefore, agents make choice between staking and non-staking
through comparing the remaining terms, prt ´ ctq and p1 ´ αq

´

AtUt
xt

¯α
. The marginal return of

staked token remains the same, while the marginal utility of non-staked token diminishes to zero.
In addition, xt Ñ 0`, the marginal utility of non-staked token must exceed rt ´ ct. That is, there
exists a unique x̃t that satisfies

rt ´ ct “ p1 ´ αq

ˆ

AtUt

x̃t

˙α

. (A.2)

The agent will first choose to keep enough tradable tokens for earning transaction convenience.
Once her holding of non-staked tokens xt reaches x̃t, she will turn to stake the remaining tokens
(if enough tokens are held).

On the other hand, let us consider the aggregate holding of tokens, qt “ xt ` lt. The marginal
utility of holding tokens should be the upper envelope of the marginal utility of the two holding
ways. Based on the above discussion, we obtain

MUq “

ˆ

µt ` max

"

rt ´ ct, p1 ´ αq

ˆ

AtUt

qt

˙α*

`
BΨ

Bnt

˙

BwJ ` qtσ
2
t BwwJ. (A.3)

MUq decreases strictly with qt (note that BwJ ą 0 and BwwJ ă 0). In addition, when qt Ñ 0`,
the max term tends to positive infinity, while when qt Ñ w´, nt Ñ 0` and then ´ BΨ

Bnt
tends to

negative infinity. Therefore, there is a unique q˚
t that satisfies the first order condition, i.e. agent

has a unique and positive optimal choice q˚
t .

Rearrange the expression of optimal individual staking ratio θ˚
t ,

θ˚
t “

l˚t
q˚
t

“ 1 ´
x˚
t

q˚
t

“ 1 ´
mintq˚

t , x̃tu

q˚
t

, (A.4)
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where the economic meaning of the minimized term is that when xt ď x̃t, earning transaction
convenience is better than earning staking reward, while when xt ď q˚

t , holding tradable token is
better than holding numeraire. Substituting Eq.(A.2), we obtain

θ˚
t “ max

#

0, 1 ´

ˆ

1 ´ α

rt ´ ct

˙
1
α AtUt

q˚
t

+

. (A.5)

Then Proposition 1 is proved.
Based on the above results, we have the following intuitions.
First, agents’ individual staking ratio increase with reward rate rt. Consider the impact of

reward rate rt. As rt increases, the marginal utility of staked token increases, while both the
convenience of token and numeraire remains the same. Intuitively, agents will increase the propor-
tion of staking. Mathematically, an increase in rt will cause the max term in Eq.(A.3) increases
(non-strictly), so that q˚

t increases. Substitute into Eq.(20), we obtain a larger optimal θ˚
t .

Second, agents have heterogeneous optimal staking choices, which are related to their wealth.
Note that in the expression of θ˚

t , both Ut and q˚
t are relative to agent’s wealth. Therefore, the

optimal individual staking ratio may be different among agents due to the difference of wealth
level. In numerical analysis, after we make more detailed assumptions on the user type Ut, We
will examine the difference between the optimal decisions of agents with different wealth levels.
Especially, when Ut increases monotonically in wt with a diminishing marginal change, the agent
who owns more wealth will decide to invest a greater proportion for staked tokens.

A.2 Proof of Proposition 2

We first analyse the resulting overall staking ratio under a given reward rate rt, Θprtq. Following
the proof of Proposition 1, we obtain x˚

t “ mintq˚
t , x̃tu. By Eq.(A.2),

x̃t “

ˆ

1 ´ α

rt ´ ct

˙
1
α

AtUt. (A.6)

Treat x̃ as a function of individual wealth w and global reward rate r at time t, x̃t is differentiable
to r and Bx̃pw,rq

Br ă 0. On the other hand, when x˚
t “ q˚

t , i.e. q˚
t ď x̃t, the max term in Eq.(A.3)

equals to p1´αq

´

AtUt
qt

¯α
. q˚

t solves the first order condition for any given r, thus q˚
t can be treated

as a function of r that is shown to be differentiable, Bq˚
t pw,rq

Br ď 0.
Note that @i, wi P W , where W ” r0, ws is a closed set. We have obtained that x˚pw, rq is

differentiable with respect to r at rj , @w P W zWj , where Wj is defined as, @w P Wj , x˚pw, rjq “

q˚pw, rjq, and @r1 ą rj , x˚pw, r1q “ x̃pw, r1q. In fact, x˚ may also be differentiable to r at rj for
w P Wj . However, we do not need this stronger condition. Since U is monotonous in w, the measure
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of Wj is always zero for any rj .
Consider the definition of overall staking ratio Θ as Eq.(13) shows, Θprq is differentiable and

satisfies

Θ1prq “
d

dr

ş

W lpw, rqmpwqdw
ş

W qpw, rqmpwqdw
“

p d
dr

ş

W zWr
lmdwqp

ş

W qmdwq ´ p
ş

W lmdwqp d
dr

ş

W zWr
qmdwq

p
ş

W qmdwq2

“
p
ş

W zWr

Blpw,rq

Br mdwqp
ş

W qmdwq ´ p
ş

W lmdwqp
ş

W zWr

Bqpw,rq

Br mdwq

p
ş

W qmdwq2

“
p
ş

W zWr

Bl
Brmdwqp

ş

W xmdwq ´ p
ş

W lmdwqp
ş

W zWr

Bx
Brmdwq

p
ş

W qmdwq2
ě 0,

(A.7)
where the third equal sign holds by Theorem 9.42 in Rudin et al. (1964).

In equilibrium under given positive aggregate reward, ρ, reward rate and staking ratio should
satisfy the fixed point problem as Eq.(17), i.e., rΘprq “ ρ ą 0. Note the following properties:
(i) rΘprq weakly increases in r, and especially, strictly increases in r for any positive Θprq. (ii)
rΘprq “ 0 when r equals zero. (iii) limrÑ`8 rΘprq “ r ą ρ. Therefore, @ρ, 0 ă ρ ă 8, there exists
a unique r that satisfies the fixed point problem.

Now considering the case as Proposition 2 describes, @ρ1 ą ρ ą 0, denote the resulting equilib-
rium reward rate as r1 and r respectively. By the monotonicity of rΘprq, we obtain r1 ą r. Then
by Eq.(A.7), the resulting equilibrium staking ratio satisfies Θpr1q ą Θprq, i.e., Θpρ1q ą Θpρq.

A.3 Proof of Proposition 3

Since Pt can be separately represented as P pAt, Qtq “ 1
Qt
V pAtq, we can analytically derive the

partial differentials of Pt. Substituting the differentials into Eq.(26) and rearranging the equation,
we obtain the ordinary differential equation for V pAtq as Eq.(29) shows.

Consider the lower boundary condition when At Ñ 0. Intuitively, when At “ 0, the platform
has no productivity and no agent participates. Therefore, the resulting token price must be zero.
Specifically, by Eq.(A.6), x̃ Ñ 0. That is, agents’ individual staking ratio will be close to 1.20 Then
the reward rate rt is close to the reward ratio ρt, and qt Ñ lt, for any agents. Substituting into the
F.O.C. of the HJB equation, we have

0 “

ˆ

µt ` ρt ´ ct `
BΨt

Bnt

˙

BwJ

BwwJ
` σ2t qt. (A.8)

20Here we focus on the case that the reward rate rt is always larger than staking cost ct no matter what
the overall staking ratio is, i.e., ct ă ρt “ minΘtPr0,1s rpρt,Θtq. Otherwise, staking is obviously a “bad”
choice for agents.
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Integrating w over W and note that
ş

W qmdw “ PQ “ V ,

0 “ µt ` ρt ´ ct ` In `
σ2t Vt
I

, (A.9)

where I “
ş

W
BwJ

BwwJmdw, In “ 1
I

ş

W
BΨt
Bnt

BwJ
BwwJmdw. Substituting the expression of µt and σt as

Eq.(32),

0 “ V 1pAtqAtµ
A `

1

2
V 2pAtqpAtσ

Aq2 ` pρt ´ ιt ´ ct ` InqV pAtq `
pV 2pAtqAtσ

Aq2

I
. (A.10)

Let At Ñ 0 and note that V 1, V 2 ă 8, V pAtq should equal to zero to satisfy the above equation.
That is, limAtÑ0 V pAtq “ 0.

As for the upper boundary, the intuition is that all the wealth will be attracted to the platform
when At is sufficiently high. We first consider the marginal utility of holding numeraire. Following
the previous denotation, qt “ xt ` lt, and nt “ wt ´ qt. We obtain

MUnpntq “ ´µt ` min

"

ct ´ rt,´p1 ´ αq

ˆ

AtUt

wt ´ nt

˙α*

´
BΨt

Bnt
´

pwt ´ ntqσ
2
t BwwJ

BwJ
. (A.11)

We want to show that for any positive ϵ ă w̄, there exists Atpϵq such that MUnpϵq ă 0 for any
At ą Atpϵq. There are some useful intuition. First, BP

BA ě 0. Since both transaction convenience
and the aggregate amount of staking reward increases with At, a higher At will naturally attract
more wealth from holding numeraire. Second, µ ą ´8 based on the assumption that µA ě 0. At

is a process that broadly captures technological advances, regulatory changes, and the variety of
activities feasible on the platform, all of which suggest a fast and volatile growth of At. Suppose
that µt tends to negatively infinity, then by Eq.(23), there must be B2P

BA2 Ñ ´8, which contradicts
the fact that the first order derivative is always greater than zero. This assumption follows Cong et
al. (2021d), where the additional reasons for parameter choices also result in a bounded σt. Third,
wBwwJ

BwJ is bounded since it is a smooth function of w P r0, w̄s. Then @ϵ P p0, wtq,

MUnpϵq ă rf ´ µ´ p1 ´ αq

ˆ

AU

w

˙α

` ψpϵq ´
wσ2BwwJ

BwJ
, (A.12)

where ψpϵq “ ´
BΨpϵq

Bn ă 8. Let

Apϵq “ max

$

&

%

0,
w

U

˜

ψpϵq ` rf ´ µ` J̄

1 ´ α

¸
1
α

,

.

-

, (A.13)

where µ and J̄ are the lower bound of µ and upper bound of ´wσ2BwwJ
BwJ respectively, and the max
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term insures a non-negative At. Substituting Apϵq into Eq.(A.12), we obtain MUnpϵq ď 0. Note
that for the same ϵ, MUnpϵq decreases with At. Therefore, @At ą Apϵq, MUnpϵq ď 0. The result
holds for any sufficiently small positive ϵ, which implies that when At tends to infinity, the marginal
utility of holding numeraire is always negative. Therefore, all the wealth will be allocated to the
platform, i.e.

lim
AtÑ8

V pAtq “

ż

W
wtmpt, wtqdwt. (A.14)

In the following, we summarize the steps of solving the pricing ODE Eq.(29). First, the equi-
librium Θt, rt, and the integral equations for the crowd, are all functions of pAt, µt, σtq. Second,
when substituting these functions into the market clearing condition, Eq.(25) will only contain
Pt, µt and σt. Third, replacing Pt with Vt by Eq.(28) and apply to Itô’s Lemma, we can ex-
press µt and σt by the derivatives of Pt. Then the equation implies a second-order ODE of V pAtq

as Eq.(29) shows. As we mentioned, besides V pAtq, V 1pAtq and V 2pAtq, the remaining terms,
including Θt, It, Int and Ixt are all functions of At. Therefore, in the process of numerical solu-
tion, we deal with a differential-algebraic system of equations (DAE) in fact. For the boundary
condition, we choose a sufficient small ϵ and correspondingly choose Apϵq as Eq.(A.13) shows,
so that V pApϵqq P p

ş

W wtmpt, wtqdwt ´ ϵ,
ş

W wtmpt, wtqdwtq. Let V pAtq “
ş

W wtmpt, wtqdwt ´ ϵ

and calculate the solution. We then decrease ϵ until the new resulting solution is numerically in-
distinguishable from the previous solution. Finally, we substitute the solution of V pAtq and the
differentials into Eq.(28) and Eq.(23) to obtain Pt, µt and σt, and then solve the equilibrium Θt,
rt, and the integral equations for the crowd.

A.4 Proof of Proposition 4

In Appendix A.1, we have proved that for any agents with different wealth, there is a unique
q˚ that satisfies the first order condition as Eq.(A.3) describes. Denote the excess return as λt,
λt “ µt ` rt ´ ct. Rearrange Eq.(A.3), we obtain

λt “ ´
BΨ

Bnt
´
q˚
t σ

2
t BwwJ

BwJ
`

min t0,MU˚
x ´MU˚

l u

BwJ
, (A.15)

where MU˚
l and MU˚

x are marginal utility of staked and tradable tokens when agent’s controls
are optimized. Note that λt is a system state that is independent of the controls of a single agent,
and the above equation holds for any wt. Especially, for agents with zero staked tokens (l˚t “ 0),
MU˚

x ě MU˚
l , we obtain

λt “ ´
BΨ

Bnt
´
q˚
t σ

2
t BwwJ

BwJ
, (A.16)

which can be interpreted as the trade-off between the transaction convenience of holding tradable
token and the convenience of holding numeraire. Substituting into Eq.(A.15), we obtain they staked
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token is also compensated with staking rewards as financial returns for the loss of transaction
convenience.

B. Extended Discussions

B.1 Joint Dynamic of Staking Ratio and Price Drift

To better understand the dynamic of staking ratio and price drift, we use a schematic as
Figure B1 shows to explain the interaction and generation of the equilibrium dynamic. The orange
surface plots the equilibrium staking ratio under plnpAtq, µtq. In fact, the equilibrium staking ratio
is determined under plnpAtq, µt, σtq. Note that σt is determined simultaneously with µt by Itô’s
Lemma, thus we do not need an extra axis for σt. The x-axis represents µt P r´0.05, 0.05s, the
y-axis represents lnpAtq P r´15, 15s, and the z-axis represents Θt P r0, 1s. Even though we have
not solve the equilibrium yet, we can enumerate all possible cases of plnpAtq, µtq and solving the
corresponding staking ratio as the orange surface shows. 21 Given µt, as At increases, the staking
ratio decreases. On the other hand, under a fixed At, staking ratio increases with µt, especially when
At is small. These conclusions are reasonable from agents’ perspective. First, when At increases,
transaction convenience is gradually higher, then agents will allocate more tradable tokens. Second,
agents also compare the tokens with numeraire. Higher price drift leads to higher excess returns
for holding tokens (both tradable and staked tokens). Especially, when At is low, agents will be
more likely to stake than to hold tradable tokens.

Note that the points on the orange surface, plnpAtq, µt,ΘplnpAtq, µtqq, satisfies agents’ optimiza-
tion and fixed point problem of rt, but not all the points satisfies the pricing ODE. However, it
is feasible to check whether a particular point satisfies the ODE based on boundary conditions.
22 Then we derive one particular curve that satisfies the pricing ODE as the orange line shows.
From another perspective, only the points on the grey line, plnpAtq, µpAt, V pAtq, V

1pAtq, V
2pAtqqq,

satisfies the pricing ODE. Then we draw a cutting plane that perpendicular to xOy as the grey
surface shows. The intersection line of two surfaces is the system solution. 23 The blue line is the
projection on plane xOz of the solution, i.e., the joint dynamic of staking ratio and price drift as
Figure 3 shows.

21In fact, we need three dimensions to actually enumerate all the cases. To simplify the plot, we use the
“correct” corresponding σ of each grid plnpAtq, µtq.

22For example, given lnpAtq “ ´15, µt “ ´0.05 (and σt “ 2.00), we obtain the resulting staking ratio
(around 0.4) and other integrals for the crowd including V pAtq. If we have determined the value of V pAtq

near lnpAtq “ ´15, then we can derive the resulting µ1
t and σ1

t. Such point satisfies the ODE if and only if
µ1
t “ µt “ ´0.05 and σ1

t “ σt “ 2.00. This is actually the mechanism in the numerically solving process.
23This is just a more comprehensible perspective. In fact the determination of the gray curve depends on

the solution of the agent’s optimization problem.
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Figure B1: Platform productivity, staking ratio, and expected price drift.
The figure visualizes the relationship among expected price appreciation µt, platform productivity At, and
staking ratio Θt. The x-axis represents µt P r´0.05, 0.05s, the y-axis represents lnpAtq P r´15, 15s, and the z-
axis represents Θt P r0, 1s. The orange surface plots the equilibrium staking ratio under plnpAtq, µtq. (In fact,
the equilibrium staking ratio is determined under plnpAtq, µt, σtq. Note that σt is determined simultaneously
with µt by Itô’s Lemma, thus we do not need an extra axis for σt.) The orange curve on the surface is the
solution that satisfies the pricing ODE. The blue and grey lines are respectively the projection of the orange
curve on plane xOz and xOy. The grey surface is a cutting plane perpendicular to xOy and crosses the
orange surface with the orange curve.
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C. Mean Field Game (of controls) System
Mean field game (MFG) is a powerful tool to analyse strategic interactions in large populations

when each individual agent has only a small impact on the behavior of other players, which has been
introduced in the pioneering works of Lasry and Lions (2007). MFG supposes that the rational
agents are indistinguishable and individually have a negligible influence on the game, and that
each individual strategy is influenced by some averages of quantities depending on the states of the
other agents. As a extended form of MFG, the mean field game of controls (MFGC) system exhibits
interaction among the agents through not only their state but also their actions (controls). In our
research, staking reward rate is influenced by aggregate staking ratio, which is hence connected
to wealth distribution and agents controls (individual staking choices). Therefore, the MFGC
approach is used in our model.

The MFGC in the present work is described by a system of nonlocal partial differential equa-
tions. It contains a Hamilton-Jacobi-Bellman (HJB) equation that leads to the optimal control
of agents, a Fokker-Planck-Kolmogorov (FP) equation that describes the transport-diffusion of
the distribution of states, and respectively a fixed point problem which gives a connection among
states, controls and mean field distribution. In our model, Eq.(12), (16) and (17) make up the
whole system.

On the mathematical analysis of MFG, Lasry and Lions (2007) gives a proof of existence and
uniqueness of solutions under sufficient assumptions such as monotonicity. It is possible to extend
these arguments to MFGC, see Cardaliaguet and Lehalle (2018). In solving the model, we followed
these sufficient assumptions and used the numerical solution method proposed by Achdou and
Kobeissi (2020).

D. Parameter Choices
In the numerical analysis, we set the initial wealth distribution to be to follow the Pareto

distribution with parameters wmin “ 10 and k “ 3. Such distribution fits the trend that a large
portion of wealth is held by a small fraction of the population. For numerical test, we set the
maximum wealth to be wmax “ 100, which is sufficient for discussion on heterogeneous optimal
choice, and the corresponding value of cumulative function has already reached 1´10´3. Since there
are unit measure of agents, the initial total wealth equals Epwq “ 15. We set the initial amount of
tokens Q0 to be 15, which makes the token price to be 1 approximately when all the wealth flows
into the platform. It is just to get a simple number without affecting any analysis process. For
example, token price is halved when the total amount of tokens is doubled, while the equilibrium
dynamics is invariant. We set the inflation rate ι fixed at 3%. The values is taken with reference
to the actual issuance of tokens. On the one hand, the fixed value matches the setting of a large
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part of the tokens, that are designed to have a constant inflation rate, such as eos. On the other
hand, the constant set makes the model easier to solve so that we can focus on the main interests.
The rewards from transaction fee is defined to be a random variable. Numerically, we exogenously
set different values of τ ranges from 0 to 0.05. The resulting solutions satisfy Proposition 2. At
the same inflation rate, larger τ leads to larger amount of reward, and thus generates a larger
equilibrium staking ratio and reward rate.

We set the annual risk-free rate of numeraire, rf , constantly equals to be zero. Then we choose
µA “ 2%. As Cong et al. (2021d) discusses, At broadly captures regulatory changes, and the variety
of activities feasible on the platform, which suggest a volatile growth of At. We set σA “ 200%.

For parameters of agents, we set the instant utility to be Upyq “
y1´γ´1
1´γ with γ “ 0.9, so that

agents exhibits constant risk aversion γ “ 0.9 the elasticity of intertemporal substitution 1{γ. The
user type U “ Upwq reflects agents’ transaction demand. We set Upwq “ κwδ with κ “ 0.01

and δ “ 0.1. This setting is to satisfy the natural assumption that BU
Bw ą 0, B2U{Bw2 ă 0. The

specific values taken have little effect on the main conclusions. For example, a larger κ makes the
transaction convenience of all agents increases with constant A, but the direction and nature of
the qualitative propositions does not change. We set α “ 0.3, which adjusts the sensitivity of the
agent to the platform productivity. In Cong et al. (2021d), α is also set to be 0.3 to match the
data. For the convenience of numeraire, we follow Valchev (2020) to model the consumption cost as
Ψpy, nq “ ψyβn1´β, where β ą 1 features that costs are increasing in consumption, and decreasing
in the level of numeraire holdings. We follow Valchev’s value choice, β “ 18 and ψ “ 4.2e´18, that
are aimed to match the interest rate semi-elasticity of money demand. Our study does not address
these concepts. We simply follow the value choices to confirm the reasonableness in reality. In fact,
in our study, the main impact of this term lies in the convenience gain of holding numeraire. With
the guarantee that BΨ{Bn ă 0, the specific choice of the relevant parameter does not affect the
main properties.

E. Staking Mechanism of Tokens in Our Sample
In the following, we describe representative staking mechanisms of some tokens in our sample.

Most information are accessed from Stakingrewards.com. There is also information from official
websites of corresponding tokens. Many tokens have similar mechanisms, thus we do not repeat
the description.

• The individual AION rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block one validator is randomly selected to create a block,
whereas 1 staked or delegated token counts as one “lottery ticket”. The selected validator
has the right to create a new block and broadcast them to the network. The Validator
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then receives the 50% of the block reward and the fees of all transactions (network rewards)
successfully included in this block, whereas the PoW Miner receives the other 50%.

• Rewards in the form of algos are granted to Algorand users for a variety of purposes. Ini-
tially, for every block that is minted, every user in Algorand receives an amount of rewards
proportional to their stake in order to establish a large user base and distribute stake among
many parties. As the network evolves, the Algorand Foundation will introduce additional
rewards in order to promote behavior that strengthens the network, such as running nodes
and proposing blocks.

• The individual BitBay rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block one staker is randomly selected whereas 1 staked
coin counts as one “lottery ticket”. The selected staker has the right to create a new block and
broadcast it to the network. He then receives the block reward and the fees of all transactions
successfully included in this block.

• Dash blockchain consensus is achieved via Proof of Work + Masternodes. Investors can lever-
age their crypto via operating masternodes. Miners are rewarded for securing the blockchain
and masternodes are rewarded for validating, storing and serving the blockchain to users.

• Eos has a fixed 5% annual inflation. 4% goes to a savings fund, which might distribute the
funds to the community later on. 1% goes to Block producers and Standby Block Producers.
Out of the 1% that are given to block producers, only 0.25% will go to the actual 21 producers
of the blocks. The other 0.75% will be shared amongst all block producers and standby block
producers based on how many votes they receive and with a minimum of 100 EOS/day.

• The individual reward of staking fantom depends on the Total Staked ratio. Transactions
are packaged into event blocks. In order for event blocks to achieve finality, event blocks
are passed between validators nodes that represent at least 2/3rds of the total validating
power of the network. A validator’s total validating power is primarily determine by the
number of tokens staked and delegated to it. A validator earns rewards each epoch for each
event block signed according to it’s validating power. By delegating investors can increase
the share of your validator proportionally to the balance of your account. He will receive
rewards accordingly and share them with investors after taking the commission.

• The effective yield for staking IDEX depends on the actual Trading Volume on IDEX Market.
The higher the trading volume on IDEX, the higher are the actual rewards. The second
metric to watch is the total amount of AURA currently staking. Less tokens on stake result
in higher rewards.
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• Every livepeer (LPT) token holder has the right to delegate their tokens to an Orchestrator
node for the right to receive both inflationary rewards in LPT and fees denominated in ETH
from work completed by that node.

• The individual LTO rewards depends on the Network Rewards (Transaction Fees spent on
the Network) and the Total Staked. Every block one staking node operator is randomly
selected to create a new block, whereas 1 staked token counts as one “lottery ticket”. The
staker receives the fees of all transactions successfully included in this block. Staking Node
Operators share the rewards with their delegators after deducting a commission.

• NEM blockchain consensus is achieved via Proof of Importance. Investors can leverage their
crypto via harvesting. To harvest NEM coins it is recommended to run the official NEM Core
wallet with an entire copy of the blockchain on your Computer or a Virtual Private Server
(VPS). The individual NEM harvesting rewards depends on the Daily Network Rewards and
Total Staked. Every block one staker is randomly selected whereas 1 staked coin counts as
one “lottery ticket”. The selected staker has the right to create a new block and broadcast
it to the network. He then receives the fees of all transactions successfully included in this
block.

• Everyone who holds NEO will automatically be rewarded by GAS. GAS is produced with
each new block. In the first year, each new block generates 8 GAS, and then decreases every
year until each block generates 1 GAS. This generation mechanism will be maintained until
the total amount of GAS reaches 100 million and no new GAS will be generated.

• Nuls blockchain consensus is achieved via Proof of Stake + Masternodes. Investors can lever-
age their crypto via staking. The amount earned is variable based on the current blockchain
metrics like the amount of stakers (Total Staked ratio). You can stake NULS into a project’s
nodes and earn their token as a reward, while the project earns NULS as a reward. Some
projects offer to stake with just 5 NULS as the minimum.

• Delegators in Polkadot are called Nominators. Anyone can nominate up to 16 validators, who
share rewards if they are elected into the active validators set. The process is a single-click
operation inside the wallet. Simply choose 1-16 validators (staking providers) who you trust
and nominate them. The current reward rate for validators is determined by the current
Total Staked ratio. The less DOT is being staked, the higher are the rewards.

• Qtum blockchain consensus is achieved via Proof of Stake 3.0. The individual reward depends
on the Block Reward, Block Time, Daily Network Rewards and Total Staked. Every block
one staker is randomly selected whereas 1 staked coin counts as one “lottery ticket”. The
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selected staker has the right to create a new block and broadcast it to the network. He then
receives the block reward and the fees of all transactions successfully included in this block.

• Synthetix Network Token blockchain consensus is achieved via the Ethereum Blockchain.
Investors can leverage their crypto via staking. SNX holders can lock their SNX as collateral
to stake the system. Synths are minted into the market against the value of the locked SNX,
where they can be used for a variety of purposes including trading and remittance. All Synth
trades on Synthetix Exchange generate fees that are distributed to SNX holders, rewarding
them for staking the system.

• Tezos blockchain consensus is achieved via Liquid Proof of Stake. Investors can leverage their
crypto via baking or delegating. There are a number of tokens that use a similar mechanism,
including iotex, irisnet, etc.

• The individual tron rewards depends on the Block Rewards, Endorsement Rewards, Block
Time, Daily Network Rewards and Total Staked. Every block one staker is randomly selected
to bake a block and 32 stakers are selected to endorse a block, whereas 1 staked coin counts
as one “lottery ticket”. The selected stakers have the right to create or endorse new block
and broadcast them network. The Baker then receives the block reward and the fees of
all transactions successfully included in this block. The Endorsers receive the endorsement
rewards.

• Wanchain blockchain consensus is achieved via Galaxy Proof-of-Stake. The individual WAN
rewards depends on the Foundation Rewards, Daily Network Rewards and Total Staked.
At the beginning of each protocol cycle (epoch), two groups, the RNP (Random Number
Proposer) group and the EL (Epoch Leader) group, are selected from all validators. 1 staked
or delegated token counts as one “lottery ticket” to be selected. T he two groups equally
share the Foundation Rewards and Transaction Fees (Network Rewards). The Foundation
Rewards consists of 10% of the outstanding Wanchain Token Supply and are decreasing by
13.6% each year, whereas the Network Rewards are expected to rise alongside wider network
usage.
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